Long-Term Dynamics and Response to Climate Change of Different Vegetation Types Using GIMMS NDVI3g Data over Amathole District in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Satellite-Derived Products
2.1.2. ERA5-Land Reanalysis Data
2.1.3. Ancillary Data
2.2. Study Methods
2.2.1. Coefficient of Variation
2.2.2. Trend Analysis
2.2.3. Partial Correlation Analysis
3. Results
3.1. Spatial and Temporal Variations in Vegetation across ADM
3.2. Relationship between Vegetation and Climatic Variables
3.2.1. NDVI3g and Air Temperature
3.2.2. NDVI3g and Precipitation
3.2.3. NDVI3g and Incoming Shortwave Radiation
3.2.4. NDVI3g and Wind Speed
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, X.H.; Evans, J.P.; McCabe, M.F. The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeorol. 2014, 15, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Bright, R.M.; Zhao, K.; Jackson, R.B.; Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Chang. Biol. 2015, 21, 3246–3266. [Google Scholar] [CrossRef] [PubMed]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tam, C.Y.; Tai, A.P.; Lau, N.C. Vegetation-heatwave correlations and contrasting energy exchange responses of different vegetation types to summer heatwaves in the Northern Hemisphere during the 1982–2011 period. Agric. For. Meteorol. 2021, 296, 108208. [Google Scholar] [CrossRef]
- Qu, M.; Hamdani, S.; Bunce, J.A. The physiology and genetics of stomatal adjustment under fluctuating and stressed environments. Appl. Photosynth. New Prog. 2016, 3, 30. [Google Scholar]
- Driesen, E.; Van den Ende, W.; De Proft, M.; Saeys, W. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 2020, 10, 1975. [Google Scholar] [CrossRef]
- Boisvenue, C.; Running, S.W. Controls on provisioning services and forest productivity: Responses and risk under changing environmental conditions. Nat. Clim. Chang. 2013, 11, 129–149. [Google Scholar]
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of vegetation response to climate change: A review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Latella, M.; Bertagni, M.B.; Vezza, P.; Camporeale, C. An integrated methodology to study riparian vegetation dynamics: From field data to impact modeling. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002094. [Google Scholar] [CrossRef] [PubMed]
- Eamus, D.; Huete, A.; Yu, Q. Vegetation Dynamics; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Afuye, G.A.; Kalumba, A.M.; Busayo, E.T.; Orimoloye, I.R. A bibliometric review of vegetation response to climate change. Environ. Sci. Pollut. Res. 2021, 25, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Hector, A.; Wardle, D.A. Biodiversity in forest carbon sequestration initiatives: Not just a side benefit. Curr. Opin. Environ. Sustain. 2009, 1, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Osterkamp, W.R.; Hupp, C.R.; Stoffel, M. The interactions between vegetation and erosion: New directions for research at the interface of ecology and geomorphology. Earth Surf. Process. Landf. 2012, 37, 23–36. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios—A review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef]
- Swain, S.; Wardlow, B.D.; Narumalani, S.; Tadesse, T.; Callahan, K. Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index. GIScience Remote Sens. 2011, 48, 432–455. [Google Scholar] [CrossRef]
- Pettorelli, N.; Chauvenet, A.L.; Duffy, J.P.; Cornforth, W.A.; Meillere, A.; Baillie, J.E. Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecol. Indic. 2012, 20, 269–276. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modelling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sun, B.; Yu, X.; Xin, Z.; Jia, G. The driver-pattern-effect connection of vegetation dynamics in the transition area between semi-arid and semi-humid northern China. Catena 2020, 194, 104713. [Google Scholar] [CrossRef]
- Parida, B.R.; Pandey, A.C.; Patel, N.R. Greening and browning trends of vegetation in India and their responses to climatic and non-climatic drivers. Climate 2020, 8, 92. [Google Scholar] [CrossRef]
- Muir, C.; Southworth, J.; Khatami, R.; Herrero, H.; Akyapı, B. Vegetation Dynamics and Climatological Drivers in Ethiopia at the Turn of the Century. Remote Sens. 2021, 13, 3267. [Google Scholar] [CrossRef]
- Zhang, J.; Stegall, S.T.; Zhang, X. Wind–sea surface temperature–sea ice relationship in the Chukchi–Beaufort Seas during autumn. Environ. Res. Lett. 2018, 13, 034008. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Zhou, L.; Chen, A. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 2006, 33, 23. [Google Scholar] [CrossRef] [Green Version]
- Murungweni, F.M.; Mutanga, O.; Odiyo, J.O. Rainfall trend and its relationship with normalized difference vegetation index in a restored semi-arid wetland of South Africa. Sustainability 2020, 12, 8919. [Google Scholar] [CrossRef]
- Dyosi, M.; Kalumba, A.M.; Magagula, H.B.; Zhou, L.; Orimoloye, I.R. Drought conditions appraisal using geoinformatics and multi-influencing factors. Environ. Monit. Assess. 2021, 193, 19. [Google Scholar] [CrossRef]
- Liu, H.; Song, X.; Wen, W.; Jia, Q.; Zhu, D. Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County. Atmosphere 2022, 13, 324. [Google Scholar] [CrossRef]
- Amathole District Municipality Integrated Development Plan Amathole District Municipality Integrated Development Plan 2011/2012—Version 5 of IDP 2011–2012. Available online: http://www.amathole.gov.za/index.php/library2/shortcodes/headings-2/707-2011-12-idp.2012.2011/12 (accessed on 6 May 2020).
- Graw, V.; Ghazaryan, G.; Dall, K.; Delgado Gómez, A.; Abdel-Hamid, A.; Jordaan, A.; Piroska, R.; Post, J.; Szarzynski, J.; Walz, Y.; et al. Drought dynamics and vegetation productivity in different land management systems of Eastern Cape, South Africa—A remote sensing perspective. Sustainability 2017, 9, 1728. [Google Scholar] [CrossRef] [Green Version]
- Amathole District Municipality Wetland Report. Local Action for Biodiversity (LAB): Wetland Management in a Changing Climate, South Africa. Available online: https://africa.iclei.org/wp-content/uploads/2020/01/2017_Report_LAB_Amathole-district-municipality-wetland-report.pdf (accessed on 20 June 2020).
- Phiri, M. Spatial and Temporal Assessment of Vegetation Indices and Climatic Variables: The Case of Eastern Cape Province, South Africa; University of Johannesburg: Johannesburg, South Africa, 2020. [Google Scholar]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Wang, Y.; Roderick, M.L.; Shen, Y.; Sun, F. Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China. Hydrol. Earth Syst. Sci. 2014, 18, 3499–3509. [Google Scholar] [CrossRef] [Green Version]
- StatsSSA. Statistics South Africa Community Survey. 2016. Available online: http://www.statssa.gov.za/ (accessed on 20 August 2021).
- SANBI. National Biodiversity Assessment. Available online: http://bgis.sanbi.org/nba/project.asp (accessed on 22 August 2021).
- SANBI. Biodiversity Mainstreaming Toolbox for Land-Use Planning and Development in Gauteng. Compiled by ICLEI—Local Governments for Sustainability. 2014. Available online: http://biodiversityadvisor.sanbi.org/wp-content/uploads/2015/02/Biodiversity-Mainstreaming-Toolbox_Senior-Managers-Summary.pdf (accessed on 22 August 2021).
- Nel, J.L.; Driver, A.; Strydom, W.F.; Maherry, A.; Petersen, C.; Hill, L.; Roux, D.J.; Nienaber, S.; Van Deventer, H.; Swartz, S.; et al. Atlas of Freshwater Ecosystem Priority Areas in South Africa. Available online: https://www.fosaf.org.za/documents/SANBI/fish-priority-areas.pdf (accessed on 7 July 2021).
- Driver, A.; Sink, K.J.; Nel, J.L.; Holness, S.; Van Niekerk, L.; Daniels, F.; Jonas, Z.; Majiedt, P.A.; Harris, L.; Maze, K. National Biodiversity Assessment: An Assessment of South Africa’s Biodiversity and Ecosystems. Available online: http://opus.sanbi.org/bitstream/20.500.12143/786/3/NBA2011_report.pdf (accessed on 8 July 2021).
- Peres, C.A. Overharvesting. In Conservation Biology for All; Sodhi, N.S., Ehrlich, P.R., Eds.; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Benhin, J.K. South African crop farming and climate change: An economic assessment of impacts. Glob. Environ. Chang. 2008, 18, 666–678. [Google Scholar] [CrossRef]
- Amathole District Municipality. Climate Change Vulnerability Assessment and Response Framework. Integr. Dev. Plan Rep. 2011, 11, 1745. [Google Scholar]
- Berliner, D.; Hayes, A.Y.; Desmet, P.; Hayes, R.; Berens, C. Eastern Cape Biodiversity Conservation Plan Handbook. Available online: https://www.dffe.gov.za/sites/default/files/docs/easterncapebiodiversity_conservationplan.pdf (accessed on 2 August 2021).
- Mucina, L.; Rutherford, M.C.; Powrie, L.W.; Niekerk, A.V.; Van der Merwe, J.H. Vegetation Field Atlas of Continental South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2014. [Google Scholar]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Zhang, J.; Bao, Y. Spatial and temporal variations of vegetation cover and the relationships with climate factors in Inner Mongolia based on GIMMS NDVI3g data. J. Arid Land 2017, 9, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Detsch, F. ‘gimms v 1.2.1’ R Package. Available online: https://github.com/environmentalinformatics-Marburg/gimms (accessed on 25 August 2021).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Mechiche-Alami, A.; Abdi, A.M. Agricultural productivity in relation to climate and cropland management in West Africa. Sci. Rep. 2020, 10, 10. [Google Scholar] [CrossRef]
- ESA. 2017. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 7 July 2021).
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. GIScience Remote Sens. 2021, 58, 235–260. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 11, 245–259. [Google Scholar] [CrossRef]
- Kendall, J.M. The turbulent boundary layer over a wall with progressive surface waves. J. Fluid Mech. 1970, 41, 259–281. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Lawin, A.E.; Laux, P.; Ishola, K.A.; Ige, S.O. Analysis of climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: Past and future occurrences. Weather Clim. Extrem. 2019, 23, 100194. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Ishola, K.A. Variability and Trends of Actual Evapotranspiration over West Africa: The Role of Environmental Drivers. Agric. For. Meteorol. 2021, 308, 108574. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Ishola, K.A.; Zhou, W.; Balogun, I.A.; Adeyewa, Z.D.; Kunstmann, H. Homogenising meteorological variables: Impact on trends and associated climate indices. J. Hydrol. 2022, 607, 127585. [Google Scholar] [CrossRef]
- Gu, Z.; Duan, X.; Shi, Y.; Li, Y.; Pan, X. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Z.; Zhang, A.; Zhao, A.; Liu, H. Impacts of climate on spatiotemporal variations in vegetation NDVI from 1982–2015 in Inner Mongolia, China. Sustainability 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Zhang, J.; Zhu, L. Variations in growing season NDVI and its sensitivity to climate change responses to Green development in Mountainous areas. Front. Environ. Sci. 2021, 9, 179. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.F.; Barbosa, H.M.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.A.; Liu, J.I. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Mohammat, A.; Wang, X.; Xu, X.; Peng, L.; Yang, Y.; Zhang, X.; Piao, S. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agric. For. Meteorol. 2013, 178, 21–30. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Lin, Z.; Xu, X. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 2018, 256, 10–21. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Chen, X.; Liu, Z. Increased spatial heterogeneity in vegetation greenness due to vegetation greening in mainland China. Ecol. Indic. 2019, 99, 240–250. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Fang, W. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena 2020, 189, 104474. [Google Scholar] [CrossRef]
- Huang, J.; Ge, Z.; Huang, Y.; Tang, X.; Shi, Z.; Lai, P.; Song, Z.; Hao, B.; Yang, H.; Ma, M. Climate change and ecological engineering jointly induced vegetation greening in global karst regions from 2001 to 2020. Plant Soil 2021, 29, 120. [Google Scholar] [CrossRef]
- Wahren, C.H.; Walker, M.D.; Bret-Harte, M.S. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob. Chang. Biol. 2005, 11, 537–552. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef]
- Shannon, L.V.; Nelson, G. The Benguela: Large scale features and processes and system variability. In The south Atlantic; Springer: Berlin/Heidelberg, Germany, 1996; pp. 163–210. [Google Scholar]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Afr. Clim. Chang. 2014, 11, 1199–1266. [Google Scholar]
- Jin, D.; Gao, Q.; Wang, Y.; Xu, L. Impacts of reduced wind speed on physiology and ecosystem carbon flux of a semi-arid steppe ecosystem. Sciences 2014, 6, 112. [Google Scholar]
- Zhang, T.; Xu, X.; Jiang, H.; Qiao, S.; Guan, M.; Huang, Y.; Gong, R. Widespread decline in winds promoted the growth of vegetation. Sci. Total Environ. 2022, 5, 153682. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, M.; Wang, N. Assessment of wind and vegetation interactions in constructed wetlands. Water 2020, 12, 1937. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afuye, G.A.; Kalumba, A.M.; Ishola, K.A.; Orimoloye, I.R. Long-Term Dynamics and Response to Climate Change of Different Vegetation Types Using GIMMS NDVI3g Data over Amathole District in South Africa. Atmosphere 2022, 13, 620. https://doi.org/10.3390/atmos13040620
Afuye GA, Kalumba AM, Ishola KA, Orimoloye IR. Long-Term Dynamics and Response to Climate Change of Different Vegetation Types Using GIMMS NDVI3g Data over Amathole District in South Africa. Atmosphere. 2022; 13(4):620. https://doi.org/10.3390/atmos13040620
Chicago/Turabian StyleAfuye, Gbenga Abayomi, Ahmed Mukalazi Kalumba, Kazeem Abiodun Ishola, and Israel Ropo Orimoloye. 2022. "Long-Term Dynamics and Response to Climate Change of Different Vegetation Types Using GIMMS NDVI3g Data over Amathole District in South Africa" Atmosphere 13, no. 4: 620. https://doi.org/10.3390/atmos13040620
APA StyleAfuye, G. A., Kalumba, A. M., Ishola, K. A., & Orimoloye, I. R. (2022). Long-Term Dynamics and Response to Climate Change of Different Vegetation Types Using GIMMS NDVI3g Data over Amathole District in South Africa. Atmosphere, 13(4), 620. https://doi.org/10.3390/atmos13040620