Origin of Moisture for the Precipitation Produced by the Exceptional Winter Storm Formed over the Gulf of Mexico in March 1993
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Tracking Algorithm
2.3. Lagrangian Moisture Sources Analysis
3. Results and Discussion
3.1. Overview of SC93
3.2. Origin of Moisture for the Precipitation Produced by SC93
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfonso, A.P.; Naranjo, L.R. Genesis and evolution of a severe squall over western Cuba. A case study of March 1993. Weather Forecast. 1996, 11, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, M.J.; Bosart, L.F.; Bracken, W.E.; Hakim, G.J.; Schultz, D.M.; Bedrick, M.A.; Tyle, K.R. The March 1993 Superstorm cyclogenesis: Incipient phase synoptic-and convective-scale flow interaction and model performance. Mon. Weather Rev. 1997, 125, 3041–3072. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, G.A. A classification scheme for winter storms in the eastern and central United States with an emphasis on nor’easters. Bull. Am. Meteorol. Soc. 2002, 83, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Changnon, S.A. Catastrophic winter storms: An escalating problem. Clim. Chang. 2007, 84, 131–139. [Google Scholar] [CrossRef]
- Kocin, P.J.; Schumacher, P.N.; Morales, R.F., Jr.; Uccellini, L.W. Overview of the 12–14 March 1993 superstorm. Bull. Am. Meteorol. Soc. 1995, 76, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Lott, N. The Big One! A Review of the March 12–14, 1993 “Storm of the Century”. Techincal Report. United States National Climate Data Center. 1993. Available online: https://www1.ncdc.noaa.gov/pub/data/techrpts/tr9301/tr9301.pdf (accessed on 16 June 2022).
- Liberato, M.L.R.; Pinto, J.G.; Trigo, I.F.; Trigo, R.M. Klaus—An exceptional winter storm over northern Iberia and southern France. Weather 2011, 66, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Liberato, M.L.R.; Pinto, J.G.; Trigo, R.M.; Ludwig, P.; Ordóñez, P.; Yuen, D.; Trigo, I.F. Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat. Hazards Earth Syst. Sci. 2013, 13, 2239–2251. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.H.; Brücher, T.; Ermert, V.; Krüger, A.; Pinto, J.G. The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci. 2009, 9, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Bosart, L.F.; Hakim, G.J.; Tyle, K.R.; Bedrick, M.A.; Bracken, W.E.; Dickinson, M.J.; Schultz, D.M. Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm’93”) over eastern North America. Mon. Weather Rev. 1996, 124, 1865–1891. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Bracken, W.E.; Bosart, L.F.; Hakim, G.J.; Bedrick, M.A.; Dickinson, M.J.; Tyle, K.R. The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Weather Rev. 1997, 125, 5–39. [Google Scholar] [CrossRef] [Green Version]
- Hakim, G.J.; Keyser, D.; Bosart, L.F. The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part II: Diagnosis using quasigeostrophic potential vorticity inversion. Mon. Weather Rev. 1996, 124, 2176–2205. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, T.; Uyeda, H. Effective factors in the development of deep convective clouds over the wet region of eastern China during the summer monsoon season. J. Meteorol. Soc. Jpn. 2002, 80, 1395–1414. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Sun, C.; Lu, C.; Liu, Y.; Zhang, G.J.; Chen, Q. Factors affecting entrainment rate in deep convective clouds and parameterizations. J. Geophys. Res. Atmos. 2021, 126, e2021JD034881. [Google Scholar] [CrossRef]
- Feng, Z.; Varble, A.; Hardin, J.; Marquis, J.; Hunzinger, A.; Zhang, Z.; Thieman, M. Deep Convection Initiation, Growth, and Environments in the Complex Terrain of Central Argentina during CACTI. Mon. Weather Rev. 2022, 150, 1135–1155. [Google Scholar] [CrossRef]
- Caplan, P.M. The 12–14 March 1993 superstorm: Performance of the NMC global medium-range model. Bull. Am. Meteorol. Soc. 1995, 76, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alarcón, A.; Sorí, R.; Fernández-Alvarez, J.C.; Nieto, R.; Gimeno, L. Where does the moisture for North Atlantic tropical cyclones come from? J. Hydrometeorol. 2022, 23, 457–472. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Coll-Hidalgo, P.; Fernández-Alvarez, J.C.; Sorí, R.; Nieto, R.; Gimeno, L. Moisture sources for precipitation associated with major hurricanes during 2017 in the North Atlantic basin. J. Geophys. Res. Atmos. 2022, 127, e2021JD035554. [Google Scholar] [CrossRef]
- Papritz, L.; Aemisegger, F.; Wernli, H. Sources and transport pathways of precipitating waters in cold-season deep North Atlantic cyclones. J. Atmos. Sci. 2021, 78, 3349–3368. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, S.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.; Larraondo, P.R.; McVicar, T.R.; Pan, M.; Dutra, E.; Miralles, D.G. MSWX: Global 3-Hourly 0.1° Bias-Corrected Meteorological Data Including Near-Real-Time Updates and Forecast Ensembles. Bull. Am. Meteorol. Soc. 2022, 103, E710–E732. [Google Scholar] [CrossRef]
- Bacmeister, J.T.; Suarez, M.J.; Robertson, F.R.; Wehner, M.F.; Neale, R.B.; Gettelman, A.; Hannay, C.; Lauritzen, P.H.; Caron, J.M.; Truesdale, J.E. Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Clim. 2014, 27, 3073–3099. [Google Scholar] [CrossRef]
- Rudeva, I.; Gulev, S.K. Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Weather Rev. 2007, 135, 2568–2587. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; James, P.A. Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 2004, 5, 6562–6678. [Google Scholar] [CrossRef]
- Stohl, A.; James, P.A. Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between the Earth’s ocean basins and river catchments. J. Hydrometeorol. 2005, 6, 961–984. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and north Atlantic oscillation influence. J. Geophys. Res. 2008, 113, D03107. [Google Scholar] [CrossRef] [Green Version]
- Läderach, A.; Sodemann, H. A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett. 2016, 43, 924–933. [Google Scholar] [CrossRef] [Green Version]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Tuinenburg, O. The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci. 2017, 21, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, L.; Eiras-Barca, J.; Durán-Quesada, A.M.; Dominguez, F.; van der Ent, R.; Sodemann, H.; Sánchez-Murillo, R.; Nieto, R.; Kirchner, J.W. The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ. 2021, 2, 558–569. [Google Scholar] [CrossRef]
- Bergeron, T. Reviews of modern meteorology-12: The problem of tropical hurricanes. Q. J. R. Meteor. Soc. 1954, 80, 131–164. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-dynamic climatology of the “bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ralph, F.M.; Zheng, M. The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett. 2019, 46, 1814–1823. [Google Scholar] [CrossRef]
- Rudeva, I.A. On the relation of the number of extratropical cyclones to their sizes. Izv. Atmos. Ocean Phys. 2008, 44, 273–278. [Google Scholar] [CrossRef]
- Konrad, C.E. The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeorol. 2001, 2, 309–325. [Google Scholar] [CrossRef]
- Legates, D.R.; DeLiberty, T.L. Measurement biases in the United States rain gauge network. J. Am. Water Resour. Assoc. 1993, 29, 855–861. [Google Scholar] [CrossRef]
- Stojanovic, M.; Gonçalves, A.; Sorí, R.; Vázquez, M.; Ramos, A.M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R. Consecutive Extratropical Cyclones Daniel, Elsa and Fabien, and Their Impact on the Hydrological Cycle of Mainland Portugal. Water 2021, 13, 1476. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coll-Hidalgo, P.; Pérez-Alarcón, A.; Gimeno, L. Origin of Moisture for the Precipitation Produced by the Exceptional Winter Storm Formed over the Gulf of Mexico in March 1993. Atmosphere 2022, 13, 1154. https://doi.org/10.3390/atmos13071154
Coll-Hidalgo P, Pérez-Alarcón A, Gimeno L. Origin of Moisture for the Precipitation Produced by the Exceptional Winter Storm Formed over the Gulf of Mexico in March 1993. Atmosphere. 2022; 13(7):1154. https://doi.org/10.3390/atmos13071154
Chicago/Turabian StyleColl-Hidalgo, Patricia, Albenis Pérez-Alarcón, and Luis Gimeno. 2022. "Origin of Moisture for the Precipitation Produced by the Exceptional Winter Storm Formed over the Gulf of Mexico in March 1993" Atmosphere 13, no. 7: 1154. https://doi.org/10.3390/atmos13071154
APA StyleColl-Hidalgo, P., Pérez-Alarcón, A., & Gimeno, L. (2022). Origin of Moisture for the Precipitation Produced by the Exceptional Winter Storm Formed over the Gulf of Mexico in March 1993. Atmosphere, 13(7), 1154. https://doi.org/10.3390/atmos13071154