Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeled Emissions Scenarios
2.3. Model Overview
2.4. Emissions Dataset
2.5. Model Set Up
2.6. Simulation Domains
2.7. Model-Derived and Observed Data Comparison
2.8. Ozone Responses to the Reduction Scenarios
2.9. Benefit Evaluation for the Reduction Scenarios
3. Results and Discussion
3.1. Comparison of Observed and Modeled Data
3.2. Ozone Distribution and Ozone Differences in the Kanto Region
3.3. Concentration Differences in Seven Measuring Points in Kanto
3.4. Benefit Evaluation for the Reduction Scenarios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Krzyzanowski, M.; Apte, J.S.; Bonjour, S.P.; Brauer, M.; Cohen, A.J.; Prüss-Ustun, A.M. Air Pollution in the Mega-cities. Curr. Environ. Health Rep. 2014, 1, 185–191. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminienė, V.; Proietti, C.; Coulibaly, F.; De Marco, A. Ozone Weekend Effect in Cities: Deep Insights for Urban Air Pollution Control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef]
- Sillman, S. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Ito, A.; Wakamatsu, S.; Morikawa, T.; Kobayashi, S. 30 Years of Air Quality Trends in Japan. Atmosphere 2021, 12, 1072. [Google Scholar] [CrossRef]
- Trieu, T.T.N.; Goto, D.; Yashiro, H.; Murata, R.; Sudo, K.; Tomita, H.; Satoh, M.; Nakajima, T. Evaluation of Summertime Surface Ozone in Kanto Area of Japan Using a Semi-regional Model and Observation. Atmos. Environ. 2017, 153, 163–181. [Google Scholar] [CrossRef]
- Berntsen, T.K.; Fuglestvedt, J.S.; Joshi, M.M.; Shine, K.P.; Stuber, N.; Ponater, M.; Sausen, R.; Hauglustaine, D.A.; Li, L. Response of climate to regional emissions of ozone precursors: Sensitivities and warming potentials. Tellus B Chem. Phys. Meteorol. 2005, 57, 283–304. [Google Scholar] [CrossRef]
- Fuglestvedt, J.; Rogelj, J.; Millar, R.J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P.M.; Kriegler, E.; Shindell, D. Implications of Possible Interpretations of Greenhouse Gas Balance in the Paris Agreement. Philos. Trans. R. Soc. Lond. A 2018, 376, 20160445. [Google Scholar] [CrossRef]
- Ou, J.; Yuan, Z.; Zheng, J.; Huang, Z.; Shao, M.; Li, Z.; Huang, X.; Guo, H.; Louie, P.K.K. Ambient Ozone Control in a Photochemically Active Region: Short-Term Despiking or Long-Term Attainment? Environ. Sci. Technol. 2016, 50, 5720–5728. [Google Scholar] [CrossRef] [PubMed]
- Stohl, A.; Aamaas, B.; Amann, M.; Baker, L.H.; Bellouin, N.; Berntsen, T.K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; et al. Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants. Atmos. Chem. Phys. 2015, 15, 10529–10566. [Google Scholar] [CrossRef] [Green Version]
- Ashina, S.; Fujino, J.; Masui, T.; Ehara, T.; Hibino, G. A Roadmap towards a Low-Carbon Society in Japan Using Backcasting Methodology: Feasible Pathways for Achieving an 80% Reduction in CO2 Emissions by 2050. Energy Policy 2012, 41, 584–598. [Google Scholar] [CrossRef]
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. A Quantitative Analysis of Japan’s Optimal Power Generation Mix in 2050 and the Role of CO2-Free Hydrogen. Energy 2018, 165, 1200–1219. [Google Scholar] [CrossRef]
- Moinuddin, M.; Kuriyama, A. Japan 2050 Low Carbon Navigator: Possible Application for Assessing Climate Policy Impacts. Energy Strategy Rev. 2019, 26, 100384. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal Changes in Ozone Concentrations and Their Impact on Vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Van Dingenen, R.; Dentener, F.J.; Raes, F.; Krol, M.C.; Emberson, L.; Cofala, J. The Global Impact of Ozone on Agricultural Crop Yields under Current and Future Air Quality Legislation. Atmos. Environ. 2009, 43, 604–618. [Google Scholar] [CrossRef]
- Amin, N. Effect of Ozone on the Relative Yield of Rice Crop in Japan Evaluated Based on Monitored Concentrations. Water Air Soil Pollut. 2014, 225, 1797. [Google Scholar] [CrossRef]
- Hosoi, S.; Yoshikado, H.; Gaidajis, G.; Sakamoto, K. Study of the Relationship between Elevated Concentrations of Photochemical Oxidants and Prevailing Meteorological Conditions in the North Kanto Area, Japan. Water Air Soil Pollut. 2011, 215, 105–116. [Google Scholar] [CrossRef]
- Khiem, M.; Ooka, R.; Huang, H.; Hayami, H. A Numerical Study of Summer Ozone Concentration over the Kanto Area of Japan Using the MM5/CMAQ Model. J. Environ. Sci. 2011, 23, 236–246. [Google Scholar] [CrossRef]
- Khiem, M.; Ooka, R.; Huang, H.; Hayami, H.; Yoshikado, H.; Kawamoto, Y. Analysis of the Relationship between Changes in Meteorological Conditions and the Variation in Summer Ozone Levels over the Central Kanto Area. Adv. Meteorol. 2010, 2010, 349248. [Google Scholar] [CrossRef] [Green Version]
- Kiriyama, Y.; Itahashi, S.; Shimadera, H.; Miura, K. Effect of NOx and VOC Controls for Surface Ozone Concentration in Summertime in Kanto Region of Japan. J. Jpn. Soc. Atmos. Environ. 2015, 50, 8–15. [Google Scholar] [CrossRef]
- Hata, H.; Tonokura, K. Impact of Next-Generation Vehicles on Tropospheric Ozone Estimated by Chemical Transport Model in the Kanto Region of Japan. Sci. Rep. 2019, 9, 3573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, E.M.; Campbell, D.E.; Stockwell, W.R.; Saunders, E.; Fitzgerald, R.; Perea, R. Projected Ozone Trends and Changes in the Ozone-Precursor Relationship in the South Coast Air Basin in Response to Varying Reductions of Precursor Emissions. J. Air Waste Manag. Assoc. 2016, 66, 201–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Lee, H.J.; Anderson, A.; Liu, S.; Kuwayama, T.; Seinfeld, J.H.; Kleeman, M.J. Direct Measurements of Ozone Response to Emissions Perturbations in California. Atmos. Chem. Phys. 2022, 22, 4929–4949. [Google Scholar] [CrossRef]
- Xing, J.; Wang, S.X.; Jang, C.; Zhu, Y.; Hao, J.M. Nonlinear Response of Ozone to Precursor Emission Changes in China: A Modeling Study Using Response Surface Methodology. Atmos. Chem. Phys. 2011, 11, 5027–5044. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Higashino, H. Development and Verification of the Atmospheric Model ADMER-PRO Applicable for Secondary Formation. J. JPN Soc. Atmos. Environ. 2015, 50, 278–291. [Google Scholar] [CrossRef]
- Inoue, K.; Tonokura, K.; Yamada, H. Modeling Study on the Spatial Variation of the Sensitivity of Photochemical Ozone Concentrations and Population Exposure to VOC Emission Reductions in Japan. Air Qual. Atmos. Health 2019, 12, 1035–1047. [Google Scholar] [CrossRef]
- Okazaki, Y.; Ito, L.; Tokai, A. Health Risk of Increased O3 Concentration Based on Regional Emission Characteristics under the Unusual State of the COVID-19 Pandemic. Atmosphere 2021, 12, 335. [Google Scholar] [CrossRef]
- Watanabe, T.; Izumi, T.; Matsuyama, H. Accumulated Phytotoxic Ozone Dose Estimation for Deciduous Forest in Kanto, Japan in Summer. Atmos. Environ. 2016, 129, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A Comprehensive Meteorological Modeling System-RAMS. Meteorol Atmos. Phys. 1992, 49, 69–91. [Google Scholar] [CrossRef]
- Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C. A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling. J. Geophys. Res. Atmos. 1989, 94, 12925–12956. [Google Scholar] [CrossRef]
- Zhang, L.; Brook, J.R.; Vet, R. A Revised Parameterization for Gaseous Dry Deposition in Air-Quality Models. Atmos. Chem. Phys. 2003, 3, 2067–2082. [Google Scholar] [CrossRef] [Green Version]
- Kannari, A.; Tonooka, Y.; Baba, T.; Murano, K. Development of Multiple-Species 1km × 1km Resolution Hourly Basis Emissions Inventory for Japan. Atmos. Environ. 2007, 41, 3428–3439. [Google Scholar] [CrossRef]
- Fukui, T.; Kokuryo, K.; Baba, T.; Kannari, A. Updating EAGrid2000-Japan Emissions Inventory Based on the Recent Emission Trends. J. JPN Soc. Atmos. Environ. 2014, 49, 117–125. [Google Scholar]
- Yoshikado, H.; Tsubaki, T.; Sasaki, K. Feasibility of a Method Simulating Long-Term Average Concentration of Pollutants Based on a Mesoscale Meteorological Model: (II). Application to Assessment of High-Level Local Ozone. Jpn. J. Soc. Atmos. Environ. 2006, 41, 15–26. [Google Scholar] [CrossRef]
- Bell, M.; Ellis, H. Comparison of the 1-Hr and 8-Hr National Ambient Air Quality Standards for Ozone Using Models-3. J. Air Waste Manag. Assoc. 2003, 53, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Hubbell, B.J.; Hallberg, A.; McCubbin, D.R.; Post, E. Health-Related Benefits of Attaining the 8-hr Ozone Standard. Environ. Health Perspect. 2005, 113, 73–82. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Advanced Industrial Science and Technology of Japan (AIST). Development of A Cost-Benefit Analysis System for Japan; Summary Report. 2015. Available online: http://www.keidanren.or.jp/cfep/jigyo2018/josei08.pdf (accessed on 16 June 2022). (In Japanese)
- U.S. Environmental Protection Agency Environmental Benefits Mapping and Analysis Program. User’s Manual Appendices; RTI International: Raleigh, NC, USA, 2015. [Google Scholar]
- Ministry of Health, Labour and Welfare. Available online: https://www.mhlw.go.jp/english/ (accessed on 14 July 2022).
- Statistics Bureau of Japan. Available online: https://www.stat.go.jp/english/data/kokusei/2020/summary.html (accessed on 13 July 2022).
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, W.R.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am. J. Respir. Crit. Care Med. 2016, 193, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Mauzerall, D.L. Characterizing Distributions of Surface Ozone and Its Impact on Grain Production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 2004, 38, 4383–4402. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Nishi, Y.; Kawada, S.; Nakashima, K. Tropospheric Ozone Reduces Resistance of Japonica Rice (Oryza sativa L., cv. Koshihikari) to Lodging. J. Agric. Meteorol. 2018, 74, 97–101. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. Available online: https://www.maff.go.jp/e/ (accessed on 22 June 2022).
- Huszar, P.; Belda, M.; Halenka, T. On the Long-Term Impact of Emissions from Central European Cities on Regional Air Quality. Atmos. Chem. Phys. 2016, 16, 1331–1352. [Google Scholar] [CrossRef] [Green Version]
- Im, U.; Poupkou, A.; Incecik, S.; Markakis, K.; Kindap, T.; Unal, A.; Melas, D.; Yenigun, O.; Topcu, S.; Odman, M.T.; et al. The Impact of Anthropogenic and Biogenic Emissions on Surface Ozone Concentrations in Istanbul. Sci. Total Environ. 2011, 409, 1255–1265. [Google Scholar] [CrossRef]
- Moonshot Research and Development Program Nitrogen Circular Technologies. Available online: https://www.n-cycle.jp/en/home-en/ (accessed on 16 June 2022).
- Xue, M.; Lin, B.-L.; Tsunemi, K.; Minami, K.; Nanba, T.; Kawamoto, T. Life Cycle Assessment of Nitrogen Circular Economy-Based NOx Treatment Technology. Sustainability 2021, 13, 7826. [Google Scholar] [CrossRef]
- Kaser, L.; Peron, A.; Graus, M.; Striednig, M.; Wohlfahrt, G.; JuráÅ, S.; Karl, T. Interannual Variability of Terpenoid Emissions in an Alpine City. Atmos. Chem. Phys. 2022, 22, 5603–5618. [Google Scholar] [CrossRef]
- Chatani, S.; Yamaji, K.; Itahashi, S.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; Miya, Y.; Komatsu, H.; Sakurai, T.; et al. Identifying Key Factors Influencing Model Performance on Ground-Level Ozone over Urban Areas in Japan through Model Inter-Comparisons. Atmos. Environ. 2020, 223, 117255. [Google Scholar] [CrossRef]
- Guerreiro, C.B.B.; Foltescu, V.; de Leeuw, F. Air Quality Status and Trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; Serra, R.; Rossello, P. Spatiotemporal Trends in Ground-Level Ozone Concentrations and Metrics in France over the Time Period 1999–2012. Environ. Res. 2016, 149, 122–144. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Emery, C.; Shadwick, D.; Wernli, H.; Jung, J.; Oltmans, S.J. Estimates of Background Surface Ozone Concentrations in the United States Based on Model-Derived Source Apportionment. Atmos. Environ. 2014, 84, 275–288. [Google Scholar] [CrossRef]
- Huangfu, P.; Atkinson, R. Long-Term Exposure to NO2 and O3 and All-Cause and Respiratory Mortality: A Systematic Review and Meta-analysis. Environ. Int. 2020, 144, 105998. [Google Scholar] [CrossRef]
Scenario | Reduction (%) | |
---|---|---|
Total NOx | Total VOC | |
BASE | 0 | 0 |
N100V050 | 0 | 50 |
N100V000 | 0 | 100 |
N090V100 | 10 | 0 |
N090V050 | 10 | 50 |
N090V000 | 10 | 100 |
N075V100 | 25 | 0 |
N075V050 | 25 | 50 |
N075V000 | 25 | 100 |
N050V100 | 50 | 0 |
N050V050 | 50 | 50 |
N050V100 | 50 | 100 |
N025V100 | 75 | 0 |
N025V050 | 75 | 50 |
N025V000 | 75 | 100 |
N010V100 | 90 | 0 |
N010V050 | 90 | 50 |
N010V000 | 90 | 100 |
N000V100 | 100 | 0 |
N000V050 | 100 | 50 |
N000V100 | 100 | 100 |
Base | N100V050 | N100V000 | N075V100 | N075V050 | N075V000 | N050V100 | N050V050 | |
Yokohama | ||||||||
Mean | 21.61 | 21.03 | 20.46 | 26.51 | 25.86 | 25.21 | 31.69 | 30.99 |
Max | 100.42 | 95.94 | 90.96 | 97.17 | 94.36 | 90.79 | 85.39 | 84.26 |
% diff mean | −2.69 | −5.32 | 22.69 | 19.68 | 16.68 | 46.63 | 43.41 | |
% diff max | −4.46 | −9.42 | −3.24 | −6.03 | −9.59 | −14.97 | −16.09 | |
Chiba | ||||||||
Mean | 33.25 | 32.86 | 32.45 | 34.94 | 34.57 | 34.17 | 36.01 | 35.73 |
Max | 68.33 | 63.22 | 60.80 | 69.75 | 64.86 | 59.27 | 66.30 | 62.73 |
% diff mean | −1.18 | −2.41 | 5.07 | 3.98 | 2.76 | 8.30 | 7.45 | |
% diff max | −7.47 | −11.02 | 2.09 | −5.07 | −13.26 | −2.96 | −8.19 | |
Shinjuku | ||||||||
Mean | 22.14 | 21.36 | 20.62 | 27.56 | 26.62 | 25.71 | 33.10 | 32.07 |
Max | 84.35 | 81.56 | 78.27 | 78.69 | 76.93 | 74.52 | 85.88 | 72.67 |
% diff mean | −3.52 | −6.85 | 24.48 | 20.23 | 16.14 | 49.53 | 44.88 | |
% diff max | −3.31 | −7.20 | −6.71 | −8.80 | −11.66 | 1.81 | −13.85 | |
Saitama | ||||||||
Mean | 29.10 | 27.78 | 26.59 | 33.79 | 32.16 | 30.65 | 38.10 | 36.59 |
Max | 81.63 | 80.56 | 79.07 | 101.73 | 77.05 | 71.26 | 117.67 | 100.15 |
% diff mean | −4.54 | −8.63 | 16.12 | 10.54 | 5.34 | 30.94 | 25.76 | |
% diff max | −1.31 | −3.14 | 24.62 | −5.62 | −12.71 | 44.15 | 22.69 | |
Mito | ||||||||
Mean | 39.35 | 38.96 | 38.51 | 38.04 | 37.92 | 39.11 | 38.84 | 38.51 |
Max | 86.42 | 83.69 | 79.85 | 66.10 | 65.74 | 78.64 | 77.17 | 75.20 |
% diff mean | −1.00 | −2.13 | −3.32 | −3.62 | −0.59 | −1.28 | −2.12 | |
% diff max | −3.17 | −7.61 | −23.52 | −23.94 | −9.01 | −10.70 | −12.99 | |
Maebashi | ||||||||
Mean | 36.82 | 34.69 | 32.55 | 38.87 | 37.24 | 35.15 | 38.95 | 38.00 |
Max | 129.00 | 106.50 | 85.96 | 129.59 | 118.75 | 100.52 | 110.99 | 107.62 |
% diff mean | −5.79 | −11.60 | 5.55 | 1.12 | −4.54 | 5.77 | 3.19 | |
% diff max | −17.44 | −33.36 | 0.45 | −7.95 | −22.08 | −13.96 | −16.58 | |
Utsunomiya | ||||||||
Mean | 39.60 | 38.51 | 37.30 | 40.37 | 39.59 | 38.61 | 39.69 | 39.27 |
Max | 104.11 | 96.92 | 87.56 | 97.53 | 94.14 | 89.06 | 83.01 | 81.80 |
% diff mean | −2.74 | −5.82 | 1.95 | −0.04 | −2.50 | 0.23 | −0.83 | |
% diff max | −6.91 | −15.90 | −6.32 | −9.58 | −14.46 | −20.26 | −21.43 | |
N050V000 | N025V100 | N025V050 | N025V000 | N000V100 | N000V050 | N000V000 | ||
Yokohama | ||||||||
Mean | 30.27 | 35.69 | 35.15 | 34.46 | 32.13 | 32.15 | 32.16 | |
Max | 82.76 | 61.83 | 61.95 | 61.97 | 51.58 | 51.58 | 51.58 | |
% diff mean | 40.10 | 65.16 | 62.65 | 59.46 | 48.70 | 48.78 | 48.84 | |
% diff max | −17.59 | −38.43 | −38.31 | −38.30 | −48.64 | −48.63 | −48.63 | |
Chiba | ||||||||
Mean | 35.39 | 35.66 | 35.57 | 35.42 | 31.92 | 31.93 | 31.94 | |
Max | 58.32 | 51.89 | 51.01 | 50.46 | 52.18 | 52.17 | 52.17 | |
% diff mean | 6.43 | 7.25 | 6.97 | 6.52 | −4.00 | −3.97 | −3.95 | |
% diff max | −14.65 | −24.05 | −25.34 | −26.15 | −23.63 | −23.64 | −23.65 | |
Shinjuku | ||||||||
Mean | 30.97 | 37.06 | 36.44 | 35.53 | 33.21 | 33.23 | 33.24 | |
Max | 65.92 | 77.71 | 73.81 | 65.10 | 53.40 | 53.40 | 53.41 | |
% diff mean | 39.89 | 67.40 | 64.58 | 60.50 | 50.01 | 50.08 | 50.15 | |
% diff max | −21.85 | −7.87 | −12.50 | −22.82 | −36.70 | −36.69 | −36.68 | |
Saitama | ||||||||
Mean | 34.72 | 39.51 | 38.90 | 37.82 | 32.62 | 32.64 | 32.66 | |
Max | 71.05 | 90.49 | 88.63 | 80.66 | 53.32 | 53.33 | 53.33 | |
% diff mean | 19.34 | 35.81 | 33.69 | 29.98 | 12.09 | 12.17 | 12.23 | |
% diff max | −12.96 | 10.85 | 8.57 | −1.19 | −34.68 | −34.67 | −34.67 | |
Mito | ||||||||
Mean | 37.76 | 35.65 | 35.67 | 35.68 | 31.57 | 31.57 | 31.58 | |
Max | 65.12 | 52.87 | 52.36 | 51.69 | 52.18 | 52.18 | 52.18 | |
% diff mean | −4.04 | −9.39 | −9.33 | −9.31 | −19.77 | −19.76 | −19.75 | |
% diff max | −24.65 | −38.82 | −39.41 | −40.19 | −39.63 | −39.63 | −39.63 | |
Maebashi | ||||||||
Mean | 36.61 | 35.84 | 35.60 | 35.10 | 25.28 | 25.31 | 25.35 | |
Max | 100.97 | 78.97 | 78.81 | 77.64 | 50.08 | 50.09 | 50.11 | |
% diff mean | −0.58 | −2.67 | −3.31 | −4.67 | −31.36 | −31.26 | −31.17 | |
% diff max | −21.73 | −38.78 | −38.91 | −39.81 | −61.18 | −61.17 | −61.16 | |
Utsunomiya | ||||||||
Mean | 38.68 | 29.59 | 29.61 | 29.62 | 36.63 | 36.59 | 36.47 | |
Max | 79.77 | 48.88 | 48.89 | 48.88 | 59.58 | 59.81 | 59.74 | |
% diff mean | −2.33 | −25.28 | −25.24 | −25.20 | −7.50 | −7.60 | −7.91 | |
% diff max | −23.38 | −53.05 | −53.04 | −53.05 | −42.77 | −42.55 | −42.62 |
Benefits | Scenarios | ||||||
---|---|---|---|---|---|---|---|
N100V050 | N100V000 | N090V100 | N090V050 | N090V000 | N075V100 | N075V050 | |
Health | 181,148 | 356,842 | −185,311 | 462 | 183,301 | −669,258 | −447,229 |
Crops | 9456 | 1904 | −23 | 903 | 1864 | 1989 | 1050 |
Total | 182,094 | 358,747 | −185,334 | 1365 | 185,165 | −649,361 | −447,018 |
N075V000 | N050V100 | N050V050 | N050V000 | N025V100 | N025V050 | N025V000 | |
Health | −259,722 | −757,873 | −603,140 | −411,804 | −662,268 | −594,634 | −483,012 |
Crops | 211 | 1771 | 2266 | 2991 | 5691 | 5777 | 6001 |
Total | −258,672 | −756,103 | −600,874 | −408,813 | −656,577 | −588,857 | −477,011 |
N010V100 | N010V050 | N010V000 | N000V100 | N000V050 | N000V000 | ||
Health | −122,021 | −119,300 | −105,458 | 648,217 | 644,702 | 641,494 | |
Crops | 10,064 | 9980 | 9890 | 14,089 | 14,071 | 14,054 | |
Total | −111,957 | −109,320 | −95,567 | 662,307 | 658,774 | 655,548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez Santiago, J.; Inoue, K.; Tonokura, K. Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan. Atmosphere 2022, 13, 1187. https://doi.org/10.3390/atmos13081187
Vazquez Santiago J, Inoue K, Tonokura K. Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan. Atmosphere. 2022; 13(8):1187. https://doi.org/10.3390/atmos13081187
Chicago/Turabian StyleVazquez Santiago, Jairo, Kazuya Inoue, and Kenichi Tonokura. 2022. "Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan" Atmosphere 13, no. 8: 1187. https://doi.org/10.3390/atmos13081187
APA StyleVazquez Santiago, J., Inoue, K., & Tonokura, K. (2022). Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan. Atmosphere, 13(8), 1187. https://doi.org/10.3390/atmos13081187