Interdecadal Variability of Summer Extreme Rainfall Events over the Huaihe River Basin and Associated Atmospheric Circulation
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Interdecadal Variability of EREs over the HRB
3.2. Atmospheric Circulation Anomalies for the Interdecadal Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Qian, M.K.; Wang, K. Flood Management in China: The Huaihe River Basin as a Case Study. In Flood Risk Management; Hromadka, T., Rao, P., Eds.; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/chapters/55656 (accessed on 8 July 2022). [CrossRef]
- Guo, X.D. Regional cultural characteristics of the Huaihe River south north transition zone. J. Bengbu Coll. 2012, 2, 121–125. Available online: http://www.bbc.edu.cn/s/73/ (accessed on 8 July 2022). (In Chinese).
- Qian, M. Speech at the 2012 Singapore International Water Week Watershed Management Forum. Harnessing the Huaihe River. 2012, 8, 5–6. Available online: http://zh.400qikan.com/wangqi/ (accessed on 7 July 2022). (In Chinese).
- Liu, T.; Gao, X.Q.; Tan, G.R.; Fan, Y.Y.; Hui, X.Y. Statistical analysis of summer heavy rainfall events over Jianghuai region of China. Plateau Meteorol. 2019, 38, 136–142. (In Chinese) [Google Scholar] [CrossRef]
- Fu, Y.F.; Luo, J.; Wang, D.Y.; Qiu, X.X.; Wang, S.N. A review of studies on climate change of summer precipitation in the Jianghuai region. Torrential Rain Disasters 2020, 39, 317–324. (In Chinese) [Google Scholar]
- Xu, M.; Ding, X.J.; Luo, L.S.; Cheng, Z.; Xu, S. A possible cause of the low frequency circulation of summer-time drought-flood abrupt alternation over the Huaihe River basin. Acta Meteorol. Sin. 2013, 1, 86–95. (In Chinese) [Google Scholar] [CrossRef]
- Rosenberg, E.A.; Keys, P.W.; Booth, D.B.; Hartley, D.; Burkey, J.; Steinemann, A.C.; Lettenmaier, D.P. Precipitation extremes and the impacts of climate change on storm water infrastructure in Washington State. Clim. Chang. 2010, 102, 319–349. [Google Scholar] [CrossRef] [Green Version]
- Schoof, J.T.; Robeson, S.M. Projecting changes in regional temperature and precipitation extremes in the United States. Weather. Clim. Extrem. 2016, 11, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.Y.; Guan, Z.Y.; Jin, D.C. Variation Features of Summer Regional Daily Precipitation Extreme Events in Yangtze–Huaihe Rivers Region and Their Relationships with Rossby Wave Activities. Chin. J. Atmos. Sci. 2022, 46, 15–26. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Precursor Circulation Features for Persistent Extreme Precipitation in Central-Eastern China. Weather Forecast. 2014, 29, 226–240. [Google Scholar] [CrossRef]
- Yuan, Y.; Yan, D.H.; Yuan, Z.; Yin, J.; Zhao, Z.N. Spatial Distribution of Precipitation in Huang-Huai-Hai River Basin between 1961 to 2016, China. Int. J. Environ. Res. Public Health 2019, 16, 3404. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Niu, J.Q. Flood disaster and strategy of control in the Huaihe drainage basin. J. Xuchang Univ. 2004, 23, 105–109. Available online: http://xcsz.cbpt.cnki.net/WKG/WebPublication/wkTextContent.aspx?colType=4&yt=2004&tp=gklb (accessed on 20 June 2022). (In Chinese).
- Rodrigo-Comino, J.; Senciales-González, M.J.; Yu, Y.; Salvati, L.; Giménez-Morera, A.; Cerdà, A. Long-term changes in rainfed olive production, rainfall and farmer’s income in Bailén (Jaén, Spain). EMJEI. 2021, 6, 58. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 125–140. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.W.; Huang, D.Q.; Zhu, J.; Kuang, X.Y.; Huang, Y. The decadal shift of the long persistent rainfall over the northern part of China and the associated ocean conditions. Int. J. Climatol. 2019, 39, 3043–3056. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, Y.N.; Zhang, Q. A summer weather index in the East Asian pressure field and associated atmospheric circulation and rainfall. Int. J. Climatol. 2012, 32, 375–386. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Wang, H.J.; Zhou, W.; Ma, J.H. Recent changes in the summer precipitation pattern in East China and the background circulation. Clim. Dyn. 2011, 36, 1463–1473. [Google Scholar] [CrossRef]
- Wang, H.J. The weakening of the Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci. 2001, 18, 376–386. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Ding, Y.H.; Sun, Y.; Wang, Z.Y.; Zhu, Y.X.; Song, Y.F. Inter-decadal variation of the summer precipitation in China and its association with decreasing Part II: Possible causes. Int. J. Climatol. 2009, 29, 1926–1944. [Google Scholar] [CrossRef]
- Zhou, L.T.; Huang, R.H. Interdecadal variability of summer rainfall in northwest China and its possible causes. Int. J. Climatol. 2009, 30, 549–557. [Google Scholar] [CrossRef]
- Huang, R.H.; Chen, J.L.; Liu, Y. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia. Chin. J. Atmos. Sci. 2011, 35, 589–606. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.Z.; Wen, Z.P.; Zhou, W.; Wang, D.X. Atmospheric water vapor transport associated with two decadal rainfall shits over east China. J. Meteorol. Soc. Jpn. Ser. II 2012, 90, 587–602. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, J.L.; Huang, R.H.; Liu, Y. Interdecadal changes of summertime heavy rainfall in eastern China and their large-scale circulation backgrounds. Chin. J. Atmos. Sci. 2016, 40, 581–590. (In Chinese) [Google Scholar]
- Kwon, M.H.; Jhun, J.G.; Ha, K.J. Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H.J.; Zhou, T.J. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res. 2017, 197, 379–389. [Google Scholar] [CrossRef]
- Wang, L.; Qian, Y.; Zhang, Y.C.; Zhao, C.; Leung, L.R.; Huang, A.N.; Xiao, C.L. Observed variability of summer precipitation pattern and extreme events in East China associated with variations of the East Asian summer monsoon. Int. J. Climatol. 2016, 36, 2942–2957. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, D.L. Impacts of decadal variability in sensible heat over the Tibetan Plateau on decadal transition of summer precipitation over dominant regions of monsoon rainfall band in eastern China since the early 2000s. Chin. J. Geophys. 2020, 3, 412–426. [Google Scholar] [CrossRef]
- Huang, R.H.; Liu, Y.; Feng, T. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull. 2013, 58, 1339–1349. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Y.; Guo, H. Circulation differences in anomalous rainfall over the Yangtze River and Huaihe River valleys in summer. Chin. J. Atmos. Sci. 2014, 38, 656–669. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, W. Variation in Summer Rainfall over the Yangtze River Region during Warming and Hiatus Periods. Atmosphere 2019, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.M.; Ding, Y.H.; Liao, F. A classification of the precipitation patterns during the Yangtze-Huaihe meiyu period for the recent 52 years. Acta Meteorol. Sin. 2010, 68, 235–247. [Google Scholar] [CrossRef]
- Ping, F.; Tang, X.B.; Gao, S.T.; Luo, Z.X. A Comparative Study of the Atmospheric circulations Associated with Rainy-season Floods between the Yangtze and Huaihe River Basins. Sci. China Earth Sci. 2014, 44, 766–782. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Two types of typical circulation pattern for persistent extreme precipitation in Central–Eastern China. Q.J.R. Meteorol. Soc. 2014, 140, 1467–1478. [Google Scholar] [CrossRef]
- Gibson, J.K.; Kallberg, P.W.; Uppala, S.; Hernandez, A.; Nomura, A.; Serrano, E. ERA description. ECMWF Re-Anal. Proj. Rep. Ser. 1997, 1, 72. Available online: https://www.ecmwf.int/sites/default/files/elibrary/1997/9584-era-description.pdf (accessed on 19 May 2018).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Li, H.M.; Zhou, T.J.; Yu, R.C. Analysis of July-August daily precipitation characteristics variation in eastern China during 1958–2000. Chin. J. Atmos. Sci. 2008, 32, 360–370. (In Chinese) [Google Scholar]
- Zhai, P.M.; Pan, X.H. Change in extreme temperature and precipitation over Northern China during the second half of the 20th century. Acta. Geogr. Sin. 2003, 58, 1–10. (In Chinese) [Google Scholar]
- Bonsal, B.R.; Zhang, X.; Vincent, L.A.; Hogg, W.D. Characteristics of daily and extreme temperatures over Canada. J. Clim. 2001, 14, 1959–1976. [Google Scholar] [CrossRef]
- Jenkinson, A.F. The analysis of meteorological and other geophysical extremes. In Synoptic Climatology Branch Memo; 58, the U.K. Met. Office; Berkshire: Bracknell, UK, 1977; p. 41. [Google Scholar]
- Liao, R.W.; Zhao, P.; Liu, H.Y.; Fang, X.Y.; Yu, F.; Cao, Y.J.; Zhang, D.B.; Song, L.L. A Fast Quality Control of 0.5 Hz Temperature Data in China. Front. Earth. Sci. 2022, 10, 844722. [Google Scholar] [CrossRef]
- Folland, C.; Anderson, C. Estimating changing extremes using empirical ranking methods. J. Clim. 2002, 15, 2954–2960. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Persistent extreme precipitation events in China during 1951–2010. Clim. Res. 2013, 57, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Zhao, P.; Yang, S.; Liu, G.; Zhou, X.J. Simulation and dynamical prediction of the summer Asian-Pacific Oscillation and associated climate anomalies by the NCEP CFSv2. J. Clim. 2013, 26, 3644–3656. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, D.Q.; Zhang, Y.C.; Huang, A.N.; Kuang, X.Y.; Huang, Y. Decadal changes of Meiyu rainfall around 1991 and its relationship with two types of ENSO. J. Geophys. Res. Atmos. 2013, 118, 9766–9777. [Google Scholar] [CrossRef]
- Li, Z.; Sun, D.Y. Trend and Abrupt Analysis of Rainfall Change During Last 50 Years in the WeiHe Basin. Earth Sci. 2015, 4, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Si, D.; Ding, Y.H.; Liu, Y.J. The decadal northward shift of Meiyu rain belt in China and its causes. Sci. Bull. 2010, 55, 68–73. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Gao, S.T.; Zhao, S.X.; Zhou, X.P.; Sun, S.Q.; Tao, S.Y. Progress of research on sub-synoptic scale and mesoscale torrential rain systems. Chin. J. Atmos. Sci. 2003, 27, 618–627. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Tao, S.Y.; Zhang, S.L. The persistent heavy rainfall over the Yangtze River valley and its associations with the circulations over East Asian during summer. Chin. J. Atmos. Sci. 2003, 27, 1018–1030. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, K.; Wang, H. Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Clim. 2015, 28, 4086–4106. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, R. The ENSO’s effect on eastern China rainfall in the following early summer. Adv. Atmos. Sci. 2009, 26, 333–342. [Google Scholar] [CrossRef]
- Si, D.; Zhao, P.; Wang, M.H. Inter-decadal change of the middle-upper tropospheric land–sea thermal contrast in the late 1990s and the associated Northern Hemisphere hydroclimate. Int. J. Climatol. 2019, 39, 3271–3281. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Yang, S.; Yu, R.C. Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Clim. 2010, 23, 1544–1562. [Google Scholar] [CrossRef]
- Fan, K.; Xu, Z.Q.; Tian, B.Q. Has the intensity of the interannual variability in summer rainfall over South China remarkably increased? Meteorol. Atmos. Phys. 2014, 124, 23–32. [Google Scholar] [CrossRef]
Period (Years) | TRA (mm) | RA-ERE (mm) | RA-LPRE (mm) | RA-LPERE (mm) |
---|---|---|---|---|
1990–1999 | 411 | 231 | 162 | 100 |
2000–2009 | 507 | 300 | 232 | 151 |
difference | 98 * | 69 * | 70 * | 51 * |
Period (Years) | ERE | LPRE | LPERE |
---|---|---|---|
1990–1999 | 761 | 402 | 224 |
2000–2009 | 955 | 504 | 294 |
difference | 195 * | 103 * | 70 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, R.; Liu, G.; Chen, J.; Zhang, L. Interdecadal Variability of Summer Extreme Rainfall Events over the Huaihe River Basin and Associated Atmospheric Circulation. Atmosphere 2022, 13, 1189. https://doi.org/10.3390/atmos13081189
Liao R, Liu G, Chen J, Zhang L. Interdecadal Variability of Summer Extreme Rainfall Events over the Huaihe River Basin and Associated Atmospheric Circulation. Atmosphere. 2022; 13(8):1189. https://doi.org/10.3390/atmos13081189
Chicago/Turabian StyleLiao, Rongwei, Ge Liu, Junming Chen, and Lei Zhang. 2022. "Interdecadal Variability of Summer Extreme Rainfall Events over the Huaihe River Basin and Associated Atmospheric Circulation" Atmosphere 13, no. 8: 1189. https://doi.org/10.3390/atmos13081189
APA StyleLiao, R., Liu, G., Chen, J., & Zhang, L. (2022). Interdecadal Variability of Summer Extreme Rainfall Events over the Huaihe River Basin and Associated Atmospheric Circulation. Atmosphere, 13(8), 1189. https://doi.org/10.3390/atmos13081189