Sub-23 nm Particle Emissions from China-6 GDI Vehicle: Impacts of Drive Cycle and Ambient Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test System, Vehicle, and Fuel
2.2. Test Plan and Repeatability
3. Results and Discussion
3.1. PN10 vs. SPN23 over Various Drive Cycles
3.2. Impacts of Ambient Temperature
4. Conclusions and Implications
- (1)
- On a cycle average, SPN10 exceeded SPN23 emissions by 31.7%, 27.8%, and 15.2% over the WLTC, RTS95, and laboratory RDE. State-of-the-art engine technology has been able to fulfill an SPN10 limit of 6.0 × 1011 #/km, but a reasonable engineering margin regarding mass production errors shall be further concerned.
- (2)
- More aggressive driving behaviors, such as frequent accelerations, particularly at high engine loads, increased the concentrations of sub-23 nm particles and their shares in the total PN emissions because sub-23 nm particles tended to be a hot-running pollutant.
- (3)
- Fuel-cut during decelerations and long idles also favored the formation of sub-23 nm particles and resulted in larger discrepancies between SPN10 and SPN23.
- (4)
- Lower ambient temperature prolonged the time for TWC light-off and hence significantly depressed the production of sub-23 nm particles within this period. The SPN10 and SPN23 cruces became more divergent once the activation of TWC, suggesting sub-23 nm could plausibly be linked with TWC oxidation reactions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baltzopoulou, P.; Melas, A.D.; Vlachos, N.; Deloglou, D.; Papaioannou, E.; Konstandopoulos, A.G. Solid Nucleation Mode Engine Exhaust Particles Detection at High Temperatures with an Advanced Half Mini DMA. SAE Tech. Pap. Ser. 2020, 1, 535–542. [Google Scholar]
- Samaras, Z.C.; Andersson, J.; Bergmann, A.; Hausberger, S.; Toumasatos, Z.; Keskinen, J.; Haisch, C.; Kontses, A.; Ntziachristos, L.D.; Landl, L.; et al. Measuring Automotive Exhaust Particles down to 10 nm. SAE Tech. Pap. 2020, 2017, 1–12. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Vanhanen, J.; Väkevä, M.; Martini, G. Investigation of Vehicle Exhaust Sub-23 nm Particle Emissions. Aerosol Sci. Technol. 2017, 51, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, K.; Li, X.Y.; MacNee, W. Ultrafine (Nanometre) Particle Mediated Lung Injury. J. Aerosol Sci. 1998, 29, 553–560. [Google Scholar] [CrossRef]
- Gidney, J.T.; Twigg, M.V.; Kittelson, D.B. Effect of Organometallic Fuel Additives on Nanoparticle Emissions from a Gasoline Passenger Car. Environ. Sci. Technol. 2010, 44, 2562–2569. [Google Scholar] [CrossRef]
- Oberd Örster, G. Significance of Particle Parameters in the Evaluation of Exposure-Dose Response Relationships of Inhaled Particles. Part. Sci. Technol. 1996, 14, 135–151. [Google Scholar] [CrossRef]
- Leach, F.; Lewis, A.; Akehurst, S.; Turner, J.; Richardson, D. Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine. SAE Tech. Pap. 2019, 24, 153. [Google Scholar]
- Maier, T.; Härtl, M.; Jacob, E.; Wachtmeister, G. Dimethyl Carbonate (DMC) and Methyl Formate (MeFo): Emission Characteristics of Novel, Clean and Potentially CO2-Neutral Fuels Including PMP and Sub-23 nm Nanoparticle-Emission Characteristics on a Spark-Ignition DI-Engine. Fuel 2019, 256, 115925. [Google Scholar] [CrossRef]
- Singh, R.; Han, T.; Fatouraie, M.; Mansfield, A.; Wooldridge, M.; Boehman, A. Influence of Fuel Injection Strategies on Efficiency and Particulate Emissions of Gasoline and Ethanol Blends in a Turbocharged Multi-Cylinder Direct Injection Engine. Int. J. Engine Res. 2021, 22, 152–164. [Google Scholar] [CrossRef]
- Toumasatos, Z.; Kontses, A.; Doulgeris, S.; Samaras, Z.; Ntziachristos, L. Particle Emissions Measurements on CNG Vehicles Focusing on Sub-23nm. Aerosol Sci. Technol. 2020, 55, 182–193. [Google Scholar] [CrossRef]
- Karjalainen, P.; Pirjola, L.; Heikkilä, J.; Lähde, T.; Tzamkiozis, T.; Ntziachristos, L.; Keskinen, J.; Rönkkö, T. Exhaust Particles of Modern Gasoline Vehicles: A Laboratory and an On-Road Study. Atmos. Environ. 2014, 97, 262–270. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.; Myung, C.L.; Lee, Y.; Park, S. Comparative Investigation of Regulated Emissions and Nano-Particle Characteristics of Light Duty Vehicles Using Various Fuels for the FTP-75 and the NEDC Mode. Fuel 2013, 106, 335–343. [Google Scholar] [CrossRef]
- Barone, T.L.; Storey, J.M.E.; Youngquist, A.D.; Szybist, J.P. An Analysis of Direct-Injection Spark-Ignition (DISI) Soot Morphology. Atmos. Environ. 2012, 49, 268–274. [Google Scholar] [CrossRef]
- Saffaripour, M.; Chan, T.W.; Liu, F.; Thomson, K.A.; Smallwood, G.J.; Kubsh, J.; Brezny, R. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle. Environ. Sci. Technol. 2015, 49, 11950–11958. [Google Scholar] [CrossRef] [PubMed]
- di Iorio, S.; Catapano, F.; Sementa, P.; Vaglieco, B.M.; Nicol, G.; Sgroi, M.F. Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure. SAE Tech. Pap. 2020, 01, 396. [Google Scholar]
- di Iorio, S.; Catapano, F.; Vaglieco, B.M.; Continillo, G.; Petito, G. Analysis of the Effect of the Sampling Conditions on the sub-23 nm Particles Emitted by a Small Displacement PFI and di SI Engines Fueled with Gasoline, Ethanol and a Blend. SAE Tech. Pap. 2019, 24, 155. [Google Scholar]
- Rönkkö, T.; Pirjola, L.; Ntziachristos, L.; Heikkilä, J.; Karjalainen, P.; Hillamo, R.; Keskinen, J. Vehicle Engines Produce Exhaust Nanoparticles Even When Not Fueled. Environ. Sci. Technol. 2014, 48, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Liati, A.; Schreiber, D.; Dasilva, Y.A.R.; Eggenschwiler, P.D. Ultrafine Particle Emissions from Modern Gasoline and Diesel Vehicles: An Electron Microscopic Perspective. Environ. Pollut. 2018, 239, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, X.; Pei, Y. Effects of Combustion Parameters and Lubricating Oil on Particulate Matter Emissions from a Turbo-Charged GDI Engine Fueled with Methanol/Gasoline Blends. SAE Tech. Pap. 2014, 01, 2841. [Google Scholar]
- Giechaskiel, B.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters. SAE Tech. Pap. 2020, 01, 2203. [Google Scholar]
- Zheng, Z.; Johnson, K.C.; Liu, Z.; Durbin, T.D.; Hu, S.; Huai, T.; Kittelson, D.B.; Jung, H.S. Investigation of Solid Particle Number Measurement: Existence and Nature of Sub-23nm Particles under PMP Methodology. J. Aerosol Sci. 2011, 42, 883–897. [Google Scholar] [CrossRef]
- Zheng, Z.; Durbin, T.D.; Karavalakis, G.; Johnson, K.C.; Chaudhary, A.; Cocker, D.R.; Herner, J.D.; Robertson, W.H.; Huai, T.; Ayala, A.; et al. Nature of Sub-23-Nm Particles Downstream of the European Particle Measurement Programme (PMP)-Compliant System: A Real-Time Data Perspective. Aerosol Sci. Technol. 2012, 46, 886–896. [Google Scholar] [CrossRef]
- Zheng, Z.; Durbin, T.D.; Xue, J.; Johnson, K.C.; Li, Y.; Hu, S.; Huai, T.; Ayala, A.; Kittelson, D.B.; Jung, H.S. Comparison of Particle Mass and Solid Particle Number (SPN) Emissions from a Heavy-Duty Diesel Vehicle under On-Road Driving Conditions and a Standard Testing Cycle. Environ. Sci. Technol. 2014, 48, 1779–1786. [Google Scholar] [CrossRef]
- Johnson, K.C.; Durbin, T.D.; Jung, H.; Chaudhary, A.; Cocker, D.R.; Herner, J.D.; Robertson, W.H.; Huai, T.; Ayala, A.; Kittelson, D. Evaluation of the European PMP Methodologies during On-Road and Chassis Dynamometer Testing for DPF Equipped Heavy-Duty Diesel Vehicles. Aerosol Sci. Technol. 2009, 43, 962–969. [Google Scholar] [CrossRef]
- Amanatidis, S.; Ntziachristos, L.; Karjalainen, P.; Saukko, E.; Simonen, P.; Kuittinen, N.; Aakko-Saksa, P.; Timonen, H.; Rönkkö, T.; Keskinen, J. Comparative Performance of a Thermal Denuder and a Catalytic Stripper in Sampling Laboratory and Marine Exhaust Aerosols. Aerosol Sci. Technol. 2018, 52, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, Y.; Tochino, S.; Kondo, K.; Haruta, K. Portable Emissions Measurement System for Solid Particle Number Including Nanoparticles Smaller than 23 nm. SAE Tech. Pap. 2017, 01, 2402. [Google Scholar]
- Yamada, H.; Funato, K.; Sakurai, H. Application of the PMP Methodology to the Measurement of Sub-23nm Solid Particles: Calibration Procedures, Experimental Uncertainties, and Data Correction Methods. J. Aerosol Sci. 2015, 88, 58–71. [Google Scholar] [CrossRef]
- Whelan, I.; Samuel, S.; Hassaneen, A. Investigation into the Role of Catalytic Converters on Tailpipe-Out Nano-Scale Particulate Matter from Gasoline Direct Injection Engine. SAE Tech. Pap. 2010, 01, 1572. [Google Scholar]
- Bogarra, M.; Herreros, J.M.; Hergueta, C.; Tsolakis, A.; York, A.P.E.; Millington, P.J. Influence of Three-Way Catalyst on Gaseous and Particulate Matter Emissions during Gasoline Direct Injection Engine Cold-Start. Johns. Matthey Technol. Rev. 2017, 61, 329–341. [Google Scholar] [CrossRef]
- Dorscheidt, F.; Sterlepper, S.; Görgen, M.; Nijs, M.; Claßen, J.; Yadla, S.K.; Maurer, R.; Pischinger, S.; Krysmon, S.; Abdelkader, A. Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates down to 10 nm. SAE Tech. Pap. 2020, 01, 2212. [Google Scholar]
- Baek, S.; Jin, D.; Jang, W.; Myung, C.L.; Park, S.; Lee, J. Evaluation of the Time-Resolved Nanoparticle Emissions and the Vehicle Performance Characteristics for a Turbocharged Gasoline Direct-Injection Vehicle with a Metal-Foam Gasoline Particulate Filter. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 230, 745–753. [Google Scholar] [CrossRef]
- Johansson, A.; Dahlander, P. Experimental Investigation of the Influence of Boost on Combustion and Particulate Emissions in Optical and Metal SGDI-Engines Operated in Stratified Mode. SAE Int. J. Engines 2016, 9, 807–818. [Google Scholar] [CrossRef]
- Leach, F.; Richard, S.; Richardson, D.; Lewis, A.; Akehurst, S.; Turner, J.; Remmert, S.; Campbell, S.; Cracknell, R. Particulate Emissions from a Highly Boosted Gasoline Direct Injection Engine. Int. J. Engine Res. 2018, 19, 347–359. [Google Scholar] [CrossRef]
- Gong, J.; Viswanathan, S.; Rothamer, D.A.; Foster, D.E.; Rutland, C.J. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters. Environ. Sci. Technol. 2017, 51, 11196–11204. [Google Scholar] [CrossRef]
- Walter, R.; Neumann, J.; Hinrichsen, O. Extended Model for Filtration in Gasoline Particulate Filters under Practical Driving Conditions. Environ. Sci. Technol. 2020, 54, 9285–9294. [Google Scholar] [CrossRef]
Instrument | Make/Model | Details |
---|---|---|
Climate chamber | Imtech EC45192327 | Temperature: −10–40 °C with control accuracy of ±1 °C Relative humidity: 5–90% RH with control accuracy of ±5% RH |
Chassis dynamometer | AVL RPL 1220 | 48‘roller-wheels, four-wheel drive compatible, maximum speed up to 200 km/h with control accuracy of ±1%; inertial weight: 454–5400 kg; parasitic loss: <5 N; traction control: 3% FS |
Constant volume sampler | AVL CVS i60LD | Full-flow CVS with critical Venturi tube controlled diluted exhaust flow rate: 3–18 m3/min |
Emission analyzer | AVL AMA i60 | THC/CH4: 0–20,000 ppmC3, heated flame ionization detector (FID). noise: ≤0.5% full scale (FS); linearity: ≤1% FS or 2% measured value, whichever is smaller; reproducibility: ≤0.5% FS NOx: 0–1000 ppm, chemi-luminesence detector (CLD). noise: ≤1% full scale (FS); linearity: ≤1% FS or 2% measured value, whichever is smaller; reproducibility: ≤0.5% FS CO2: 0–20%, infrared detector; CO: 0–5000 ppm, infrared detector. noise: ≤1% full scale (FS); linearity: ≤1% FS or 2% measured value, whichever is smaller; reproducibility: ≤0.5% FS N2O: 0–100 ppm, continuous-wave quantum cascade LASER spectrometric detector. noise: ≤0.3 % full scale (FS); linearity: ≤1% FS or 2% measured value, whichever is smaller; reproducibility: ≤0.5% FS |
PM sampler | AVL PSS i60 | Sample flow rate: 95 L/min; 47 mm stainless steel holder; flow rate control: ±1.5% |
PN measurement | AVL 489 APC | Condensation particle counter (CPC); cut-off efficiency: 50% at 23 nm |
PN measurement | HORIBA MEXA-2310SPCS | Condensation particle counter (CPC); cut-off efficiency: 60% at 10 nm |
Repeat #1 | Repeat #2 | Repeat #3 | Average | Standard Deviation | Deviation In % | Limit Value | ||
---|---|---|---|---|---|---|---|---|
THC | (mg/km) | 13.2 | 13.3 | 13.2 | 13.23 | 0.06 | 0.44 | 50 |
CO | (mg/km) | 129.9 | 129.0 | 119.6 | 126.19 | 5.72 | 4.53 | 500 |
NOx | (mg/km) | 6.2 | 5.2 | 6.9 | 6.08 | 0.86 | 14.06 | 35 |
CO2 | (g/km) | 145.33 | 141.44 | 140.15 | 142.31 | 2.70 | 1.90 | N/A |
CH4 | (mg/km) | 1.2 | 1.1 | 1.2 | 1.17 | 0.05 | 3.98 | N/A |
NMHC | (mg/km) | 12.1 | 12.2 | 12.0 | 12.10 | 0.10 | 0.84 | 35 |
N2O | (mg/km) | 0.4 | 0.4 | 0.7 | 0.53 | 0.16 | 29.06 | 20 |
PM | (mg/km) | 0.09 | 0.21 | 0.11 | 0.14 | 0.07 | 48.86 | 3.0 |
SPN23 | (#/km) | 2.79 × 1011 | 3.05 × 1011 | 2.81 × 1011 | 2.89 × 1011 | 1.43 × 1010 | 4.96 | 6.0 × 1011 |
FE | (L/100 km) | 6.19 | 6.02 | 5.97 | 6.06 | 0.12 | 1.90 | N/A |
WLTC | Low | Mid | High | Ultra-High | ||
---|---|---|---|---|---|---|
SPN23 | (#/km) | 3.05 × 1011 | 8.36 × 1011 | 2.66 × 1011 | 2.18 × 1011 | 2.16 × 1011 |
SPN10 | (#/km) | 4.02 × 1011 | 1.12 × 1012 | 3.48 × 1011 | 2.74 × 1011 | 2.90 × 1011 |
Increment | % | 31.7 | 34.0 | 30.8 | 25.6 | 34.5 |
Duration (s) | Distance (km) | SPN10 (#/km) | SPN23 (#/km) | Increment (%) | |
---|---|---|---|---|---|
Urban | 3062 | 26.09 | 3.45 × 1012 | 3.14 × 1012 | 10.0 |
Rural | 1531 | 17.67 | 8.90 × 1011 | 6.35 × 1011 | 40.1 |
Highway | 1141 | 26.24 | 4.88 × 1011 | 3.49 × 1011 | 40.0 |
Trip | 5581 | 70.00 | 1.63 × 1012 | 1.41 × 1012 | 15.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Ge, Y.; Wang, X.; Liu, H.; Su, S.; Li, C.; Tao, T. Sub-23 nm Particle Emissions from China-6 GDI Vehicle: Impacts of Drive Cycle and Ambient Temperature. Atmosphere 2022, 13, 1216. https://doi.org/10.3390/atmos13081216
Guo D, Ge Y, Wang X, Liu H, Su S, Li C, Tao T. Sub-23 nm Particle Emissions from China-6 GDI Vehicle: Impacts of Drive Cycle and Ambient Temperature. Atmosphere. 2022; 13(8):1216. https://doi.org/10.3390/atmos13081216
Chicago/Turabian StyleGuo, Dongdong, Yunshan Ge, Xin Wang, Haixu Liu, Sheng Su, Chunbo Li, and Tinghong Tao. 2022. "Sub-23 nm Particle Emissions from China-6 GDI Vehicle: Impacts of Drive Cycle and Ambient Temperature" Atmosphere 13, no. 8: 1216. https://doi.org/10.3390/atmos13081216
APA StyleGuo, D., Ge, Y., Wang, X., Liu, H., Su, S., Li, C., & Tao, T. (2022). Sub-23 nm Particle Emissions from China-6 GDI Vehicle: Impacts of Drive Cycle and Ambient Temperature. Atmosphere, 13(8), 1216. https://doi.org/10.3390/atmos13081216