Chemical Characterization and Health Risk Assessment of Particulate Matter from Household Activities in Bamako, Mali, Western Sub-Saharan Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sampling Sites and Sampling Procedure
2.1.1. In Situ Samplings (Bamako)
2.1.2. Laboratory Samplings
2.2. Chemical Analysis and Qualiy Control
2.3. Health Risk Assessement
2.3.1. Non-Carcinogenic Risks
2.3.2. Carcinogenic Risks
3. Results
3.1. Ionic Composition
3.2. Carbonaceous Composition
3.3. Metallic Elements Composition
3.4. Health Exposure Assessement
3.4.1. Non-Carcinogenic Risks
3.4.2. Carcinogenic Risks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The WHO Regional Office for Europe. 2014. Available online: https://www.euro.who.int/__data/assets/pdf_file/0020/248600/Combined-or-multiple-exposure-to-health-stressors-in-indoor-built-environments.pdf (accessed on 14 July 2022).
- Government of India. Report of the Steering Committee on Air Pollution and Health Related Issues. 2015. Available online: https://main.mohfw.gov.in/sites/default/files/5412023661450432724_0.pdf (accessed on 14 July 2022).
- Lin, C.C.; Chiu, C.C.; Lee, P.Y.; Chen, K.J.; He, C.X.; Hsu, S.K.; Cheng, K.C. The Adverse Effects of Air Pollution on the Eye: A Review. Int. J. Environ. Res. Public Health 2022, 19, 1186. [Google Scholar] [CrossRef] [PubMed]
- Hannah Ritchie and Max Roser. Indoor Air Pollution. Our World in Data. 2013. Available online: https://ourworldindata.org/indoor-air-pollution (accessed on 20 June 2022).
- WHO. Pollution de l’air Intérieur des Ménages au Burkina Faso. 2022. Available online: https://www.who.int/fr/publications-detail/9789240023765 (accessed on 14 July 2022).
- Sidibe, A.; Sakamoto, Y.; Murano, K.; Koita, O.A.; Traore, I.; Dansoko, Y.; Kajii, Y. Personal Exposure to Fine Particles (PM2.5) in Northwest Africa: Case of the Urban City of Bamako in Mali. Public Health 2022, 19, 611. [Google Scholar] [CrossRef] [PubMed]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Hashim, J.H.; Jalaludin, J.; Hashim, Z.; Goldstein, B.D. Mosquito coil emissions and health implications. Environ. Health Perspect. 2003, 111, 1454–1460. [Google Scholar] [CrossRef]
- Apte, K.; Salvi, S. Household air pollution and its effects on health. F1000Research 2016, 5, 2593. [Google Scholar] [CrossRef] [PubMed]
- Hogarh, J.N.; Agyekum, T.P.; Bempah, C.K.; Owusu-Ansah, E.D.; Avicor, S.W.; Awandare, G.A.; Fobil, J.N.; Obiri-Danso, K. Environmental health risks and benefits of the use of mosquito coils as malaria prevention and control strategy. Malar. J. 2018, 17, 265. [Google Scholar] [CrossRef]
- Nouvellet, Y.; Sylla, M.L.; Kassambara, A. Résumé la Production de Bois D’énergie Dans les Jachères au Mali. 2003. Available online: https://agritrop.cirad.fr/513389/1/document_513389.pdf (accessed on 14 July 2022).
- Nadia Chahed. Mali Paludisme 1698 Décès Enregistrés en 2020. Anadolu Agency, 2021. Available online: https://www.aa.com.tr/fr/afrique/mali-paludisme-1698-d%C3%A9c%C3%A8s-enregistr%C3%A9s-en-2020/2426140 (accessed on 14 July 2022).
- Severe Malaria Observatory. Paludisme au Mali Statistiques. Available online: https://www.aa.com.tr/fr/afrique/mali-paludisme (accessed on 15 March 2022).
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for Europe. Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. In Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution; World Health Organization Regional Office Europe: Brussels, Belgium, 2007; 130p, Available online: https://apps.who.int/iris/bitstream/handle/10665/107872/9789289071796-eng.pdf?sequence=1&isAllowed=y (accessed on 14 July 2022).
- Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The dri thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. Air quality studies. Atmos. Environ. Part A Gen. Top. 1993, 27, 1185–1201. [Google Scholar] [CrossRef]
- Li, P.; Sato, K.; Hasegawa, H.; Huo, M.; Minoura, H.; Inomata, Y.; Take, N.; Yuba, A.; Futami, M.; Takahashi, T.; et al. Chemical Characteristics and Source Apportionment of PM2.5 and Long-Range Transport from Northeast Asia Continent to Niigata in Eastern Japan. Aerosol Air Qual. Res. 2018, 18, 938–956. [Google Scholar] [CrossRef]
- Baldorj, B.; Sato, K. Chemical Characterization of PM 2.5 Particles in Ulaanbaatar, Mongolia. 2015. Available online: https://www.eanet.asia/wp-content/uploads/2019/04/Report_19.pdf (accessed on 1 July 2022).
- EANET. Acid Deposition Monitoring Network in East Asia (EANET) Report of the Inter-Laboratory Comparison Project 2015 18th Inter-laboratory Comparison Project on Wet Deposition 11th Inter-Laboratory Comparison Project on Dry Deposition 17th Inter-Laboratory Comparison Project on Soil 16th Inter-Laboratory Comparison Project on Inland Aquatic Environment Network Center for EANET Contents. 2016. Available online: https://monitoring.eanet.asia/document/public/download?cd=44 (accessed on 14 July 2022).
- EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). 2009. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f (accessed on 14 July 2022).
- Duan, X.; Yan, Y.; Li, R.; Deng, M.; Hu, D.; Peng, L. Seasonal Variations, Source Apportionment, and Health Risk Assessment of Heavy Metals in PM2.5 in Ningbo, China. Aerosol Air Qual. Res. 2019, 19, 2083–2092. [Google Scholar] [CrossRef]
- US EPA. Guidelines for Carcinogen Risk Assessment. 2005. Available online: https://www.epa.gov/sites/default/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf (accessed on 14 July 2022).
- EPA. Integrated Risk Information System. 2022. Available online: https://www.epa.gov/iris (accessed on 14 July 2022).
- Ma, Y.; Tigabu, M.; Guo, X.; Zheng, W.; Guo, L.; Guo, F. Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests 2019, 10, 994. [Google Scholar] [CrossRef]
- Habre, R.; Moshier, E.; Castro, W.; Nath, A.; Grunin, A.; Rohr, A.; Godbold, J.; Schachter, N.; Kattan, M.; Coull, B.; et al. The effects of PM2.5 and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. J. Exp. Sci. Environ. Epidemiol. 2014, 24, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, Z.; Wang, F.; Zhou, X.; Wang, F.; Ma, S.; Zhang, X. Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China. Atmosphere 2021, 12, 456. [Google Scholar] [CrossRef]
- Jayarathne, T.; Stockwell, C.E.; Yokelson, R.J.; Nakao, S.; Stone, E.A. Emissions of Fine Particle Fluoride from Biomass Burning. Environ. Sci. Technol. 2014, 48, 12636–12644. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Z.; Tong, J.; Wang, Z.; Han, Z.; Zhang, J. Using charcoal as base material reduces mosquito coil emissions of toxins. Indoor Air 2010, 20, 176–184. [Google Scholar] [CrossRef]
- Hong, X.; Liang, H.; Lv, S. Release of Hydrogen Fluoride from Clay Used for Coal-Combustion in Zhijin County, Guizhou Province, People’s Republic of China. 2017. Available online: https://www.researchgate.net/publication/319007813_Release_of_hydrogen_fluoride_from_clay_used_for_coalcombustion_in_zhijin_county_guizhou_province_people’s_Republic_of_China (accessed on 14 July 2022).
- Wu, D.; Zheng, B.; Wang, A.; Yu, G. Fluoride exposure from burning coal-clay in Guizhou province, China. Res. Rep. Fluoride 2004, 20, 20–27. [Google Scholar]
- Phạm, K.O. Research on Factors Affecting Concentrations of Polycyclic Aromatic Hydrocarbons in Polluted and Clean Areas. 2020. Available online: https://opera.repo.nii.ac.jp/?action=repository_action_common_download&item_id=11851&item_no=1&attribute_id=19&file_no=1 (accessed on 14 July 2022).
- Mano, S.; Andreae, M. Emission of Methyl Bromide from Biomass Burning. Available online: https://www.science.org (accessed on 14 July 2022).
- Vainikka, P.; Hupa, M. Review on bromine in solid fuels. Part 1: Natural occurrence. Fuel 2012, 95, 1–14. [Google Scholar] [CrossRef]
- Xiao, H.W.; Wu, J.F.; Luo, L.; Liu, C.; Xie, Y.J.; Xiao, H.Y. Enhanced biomass burning as a source of aerosol ammonium over cities in central China in autumn. Environ. Pollut. 2020, 266, 115278. [Google Scholar] [CrossRef]
- Vainikka, P. Occurrence of Bromine in Fluidised Bed Combustion of Solid Recovered Fuel [Förekomst av Brom vid Förbränning av Returbränsle i Fluidiserade Bädd; Bromin Esiintyminen Kierrätyspolttoaineen Leijukerrospoltossa]. 2011. Available online: https://www.vttresearch.com/sites/default/files/pdf/publications/2011/P778.pdf (accessed on 14 July 2022).
- Shen, Z.; Han, Y.; Cao, J.; Tian, J.; Zhu, C.; Liu, S.; Liu, P.; Wang, Y. Characteristics of Traffic-related Emissions: A Case Study in Roadside Ambient Air over Xi’an, China. Aerosol Air Qual. Res. 2010, 10, 292–300. [Google Scholar] [CrossRef]
- Ji, D.; Gao, M.; Maenhaut, W.; He, J.; Wu, C.; Cheng, L.; Gao, W.; Sun, Y.; Sun, J.; Xin, J.; et al. The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. Environ. Int. 2019, 126, 171–183. [Google Scholar] [CrossRef]
- Alves, C.A.; Duarte, M.; Nunes, T.; Moreira, R.; Rocha, S. Carbonaceous Particles Emitted from Cooking Activities in Portugal. 2011. Available online: https://journal.gnest.org/sites/default/files/Submissions/gnest_01313/gnest_01313_ver2.docx (accessed on 21 April 2022).
- Popovicheva, O.B.; Engling, G.; Diapouli, E.; Saraga, D.; Persiantseva, N.M.; Timofeev, M.A.; Kireeva, E.D.; Shonija, N.K.; Chen, S.H.; Nguyen, D.L.; et al. Impact of Smoke Intensity on Size-Resolved Aerosol Composition and Microstructure during the Biomass Burning Season in Northwest Vietnam. Aerosol Air Qual. Res. 2016, 16, 2635–2654. [Google Scholar] [CrossRef]
- Zhong, J.; Ding, J.; Su, Y.; Shen, G.; Yang, Y.; Wang, C.; Simonich, S.L.M.; Cao, H.; Zhu, Y.; Tao, S. Carbonaceous Particulate Matter Air Pollution and Human Exposure from Indoor Biomass Burning Practices. Environ. Eng. Sci. 2012, 29, 1038–1045. [Google Scholar] [CrossRef]
- Chowdhury, Z.; Le, L.T.; Al Masud, A.; Chang, K.C.; Alauddin, M.; Hossain, M.; Zakaria, A.B.M.; Hopke, P.K. Quantification of Indoor Air Pollution from Using Cookstoves and Estimation of Its Health Effects on Adult Women in Northwest Bangladesh. Aerosol Air Qual. Res. 2012, 12, 463–475. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Moeran, B. Making Scents of Smell Manufacturing Incense in Japan. 2022. Available online: https://research-api.cbs.dk/ws/portalfiles/portal/59007640/6945.pdf (accessed on 14 July 2022).
- Yadav, V.K.; Choudhary, N.; Heena Khan, S.; Khayal, A.; Ravi, R.K.; Kumar, P.; Modi, S.; Gnanamoorthy, G. Incense and incense sticks: Types, components, origin and their religious beliefs and importance among different religions. J. Bio Innov. 2020, 9, 1420–1439. [Google Scholar] [CrossRef]
- Eilenberg, S.R.; Bilsback, K.R.; Johnson, M.; Kodros, J.K.; Lipsky, E.M.; Naluwagga, A.; Fedak, K.M.; Benka-Coker, M.; Reynolds, B.; Peel, J.; et al. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. Atmos. Environ. 2018, 190, 116–125. [Google Scholar] [CrossRef]
- Popovicheva, O.; Kozlov, V.; Kireeva, E.; Persianseva, N.; Engling, G.; Eleftheriadis, K.; Diapouli, E.; Saraga, D. Aerosol in Emissions of Siberian Biomass Burning: Small-Scale Fire Study. 2014. Available online: www.scientevents.com/proscience/ (accessed on 14 July 2022).
- Popovicheva, O.B.; Engling, G.; Ku, I.T.; Timofeev, M.A.; Shonija, N.K. Aerosol Emissions from Long-lasting Smoldering of Boreal Peatlands: Chemical Composition, Markers, and Microstructure. Aerosol Air Qual. Res. 2019, 19, 484–503. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Wang, X.; Zhang, B.; Zhang, Y.; Zhang, R.; Shen, Z. Saccharides Emissions from Biomass and Coal Burning in Northwest China and Their Application in Source Contribution Estimation. Atmosphere 2021, 12, 821. [Google Scholar] [CrossRef]
- Atiku, F.A.; Mitchell, E.J.S.; Lea-Langton, A.R.; Jones, J.M.; Williams, A.; Bartle, K.D. The Impact of Fuel Properties on the Composition of Soot Produced by the Combustion of Residential Solid Fuels in a Domestic Stove. Fuel Processing Technol. 2016, 151, 117–125. [Google Scholar] [CrossRef]
- Coffey, E.R.; Pfotenhauer, D.; Mukherjee, A.; Agao, D.; Moro, A.; Dalaba, M.; Begay, T.; Banacos, N.; Oduro, A.; Dickinson, K.L.; et al. Kitchen Area Air Quality Measurements in Northern Ghana: Evaluating the Performance of a Low-Cost Particulate Sensor within a Household Energy Study. Atmosphere 2019, 10, 400. [Google Scholar] [CrossRef]
- Keita, S.; Liousse, C.; Yoboué, V.; Dominutti, P.; Guinot, B.; Assamoi, E.M.; Borbon, A.; Haslett, S.L.; Bouvier, L.; Colomb, A.; et al. Particle and VOC emission factor measurements for anthropogenic sources in West Africa. Atmos. Chem. Phys. 2018, 18, 7691–7708. [Google Scholar] [CrossRef]
- Kim, K.H.; Sekiguchi, K.; Kudo, S.; Sakamoto, K. Characteristics of Atmospheric Elemental Carbon (Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol Air Qual. Res. 2011, 11, 1–12. [Google Scholar] [CrossRef]
- Mishra, M.; Kulshrestha, U.C. Source Impact Analysis Using Char-EC/Soot-EC Ratios in the Central Indo-Gangetic Plain (IGP) of India. Aerosol Air Qual. Res. 2021, 21, 200628. [Google Scholar] [CrossRef]
- Han, Y.M.; Cao, J.J.; Lee, S.C.; Ho, K.F.; An, Z.S. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmos. Chem. Phys. 2010, 10, 595–607. [Google Scholar] [CrossRef]
- Han, Y.M.; Lee, S.C.; Cao, J.J.; Ho, K.F.; An, Z.S. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmos. Environ. 2009, 43, 6066–6073. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Xu, C.; Li, N.; Liu, Z.; Wang, Q.; Xu, D. Source Apportionment and Influencing Factor Analysis of Residential Indoor PM2.5 in Beijing. Int. J. Environ. Res. Public Health 2018, 15, 686. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B. The fate of heavy metals during combustion and gasification of contaminated biomass—A brief review. J. Hazard. Mater. 2013, 256–257, 56–66. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Liu, L.Y.; Guo, L.L.; Lv, Y.L.; Zhang, G.M.; Lei, J.; Liu, W.T.; Xiong, Y.Y.; Wen, H.M. Seasonal concentrations, contamination levels, and health risk assessment of arsenic and heavy metals in the suspended particulate matter from an urban household environment in a metropolitan city, Beijing, China. Environ. Monit. Assess. 2015, 187, 409. [Google Scholar] [CrossRef]
- Ajab, H.; Yaqub, A.; Malik, S.A.; Junaid, M.; Yasmeen, S.; Abdullah, M.A. Characterization of Toxic Metals in Tobacco, Tobacco Smoke, and Cigarette Ash from Selected Imported and Local Brands in Pakistan. Sci. World J. 2014, 2014, 413614. [Google Scholar] [CrossRef]
- Caruso, R.; O’Connor, R.; Stephens, W.; Cummings, K.; Fong, G. Toxic Metal Concentrations in Cigarettes Obtained from U.S. Smokers in 2009: Results from the International Tobacco Control (ITC) United States Survey Cohort. Int. J. Environ. Res. Public Health 2013, 11, 202–217. [Google Scholar] [CrossRef]
- Haleem, A.; Amin, S.; Mahmood, U. Heavy metal and polycyclic aromatic hydrocarbons in cigarettes: An analytical assessment. Popul. Med. 2020, 2, 19. [Google Scholar] [CrossRef]
- Embiale, A.; Chandravanshi, B.S.; Zewge, F.; Sahle-Demessie, E. Health risk assessment of trace elements through exposure of particulate matter-10 during the cooking of Ethiopian traditional dish sauces. Toxicol. Environ. Chem. 2020, 102, 151–169. [Google Scholar] [CrossRef]
- Chowdhury, M.; Ghosh, S.; Padhy, P.K. Effects of indoor air pollution on tribal community in rural India and health risk assessment due to domestic biomass burning: A realistic approach using the lung deposition model. Environ. Sci. Pollut. Res. 2022, 1, 3. [Google Scholar] [CrossRef]
- Nadia, G.; Anum, S. Toxic Impacts of Sub-Chronic Inhalation of Mosquito Coil Smoke in Rabbits. Int. Res. J. Environ. Sci. Int. Sci. Congr. Assoc. 2014, 3, 86–91. [Google Scholar]
- Idowu, E.T.; Aimufua, J.; Ejovwoke, Y.O.; Akinsanya, B.; Adetoro Otubanjo, O. Toxicological effects of prolonged and intense use of mosquito coil emission in rats and its implications on malaria control. Rev. De Biol. Trop. 2013, 61, 1463–1473. [Google Scholar] [CrossRef]
- Lawrance, C.E.; Croft, A.M. Do Mosquito Coils Prevent Malaria? A Systematic Review of Trials. J. Travel Med. 2006, 11, 92–96. [Google Scholar] [CrossRef] [PubMed]
Combustion Type | OC | EC | |
---|---|---|---|
This research | CHL | 346.6 | 50.2 |
Wood | 2271.4 | 290.5 | |
ICS | 1972.3 | 33.43 | |
IST | 5172.5 | 188.2 | |
Amazon region (2011) [38] | CHL (grilling) | 62,000 | 350 |
Wood (oven) | 178,000 | 9240 | |
China (2012) [40] | Wood | 3540 | 45.1 |
Bangladesh (2012) [41] | Wood and/or rice husk (unimproved oven) | 210 | 176 |
Wood and/or rice husk (improved oven) | 182 | 152 | |
Singapore (2008) [42] | Gas (steaming) | 29.3 | 6.16 |
Gas (boiling) | 36.1 | 8.11 | |
Gas (stir-frying) | 62.6 | 14.5 | |
Gas (pan-frying) | 71.6 | 14.7 | |
Gas (deep frying) | 121.5 | 15.8 | |
North Vietnam (2016) [39] | Wood (indoor) | 901 | 73 |
Wood oven | 825 | 203 | |
Wood (outdoor) | 850 | 192 | |
B burning (cassava root) | 3802 | 203 | |
B burning (corn and bushes) | 166 | 28 | |
B burning (longan leaves) | 1030 | 52 |
Charcoal Cooking | Wood Cooking | IST | ICS | ||||||
---|---|---|---|---|---|---|---|---|---|
Adults | Children | Adults | Children | Adults | Children | Adults | Children | ||
HQ | Cr | 0.07 | 0.07 | 0.11 | 0.11 | 0.02 | 0.02 | 0.10 | 0.10 |
Mn | 0.99 | 0.99 | 1.68 | 1.68 | 0.13 | 0.13 | 0.70 | 0.70 | |
Ni | 0.48 | 4.91 | 0.31 | 3.16 | 0.02 | 0.25 | 0.18 | 1.82 | |
As | 0.04 | 0.04 | 0.06 | 0.06 | 0.03 | 0.03 | 0.03 | 0.03 | |
Cd | 0.02 | 0.02 | 0.04 | 0.04 | 0.06 | 0.06 | 0.02 | 0.02 | |
Be | 0.02 | 0.02 | 0.10 | 0.03 | 0.08 | 0.02 | 0.08 | 0.01 | |
HI | 1.61 | 6.04 | 2.31 | 5.09 | 0.35 | 0.51 | 1.11 | 2.69 |
Charcoal Cooking | Wood Cooking | IST | ICS | ||||||
---|---|---|---|---|---|---|---|---|---|
Adults | Children | Adults | Children | Adults | Children | Adults | Children | ||
CR | Cr | 2.76 × 10−5 | 8.04 × 10−5 | 4.70 × 10−5 | 1.37 × 10−4 | 9.28 × 10−6 | 2.71 × 10−5 | 4.04 × 10−5 | 1.18 × 10−4 |
Ni | 5.87 × 10−7 | 1.71 × 10−6 | 3.78 × 10−7 | 1.10 × 10−6 | 2.95 × 10−8 | 8.60 × 10−8 | 2.18 × 10−7 | 6.35 × 10−7 | |
As | 8.46 × 10−7 | 2.47 × 10−6 | 1.25 × 10−6 | 3.64 × 10−6 | 6.94 × 10−7 | 2.02 × 10−6 | 6.69 × 10−7 | 1.95 × 10−6 | |
Cd | 1.06 × 10−7 | 3.09 × 10−7 | 2.73 × 10−7 | 7.96 × 10−7 | 3.78 × 10−7 | 1.10 × 10−6 | 1.34 × 10−7 | 3.89 × 10−7 | |
Pb | 4.34 × 10−8 | 1.27 × 10−7 | 1.35 × 10−7 | 3.95 × 10−7 | 2.94 × 10−8 | 8.56 × 10−8 | 2.49 × 10−8 | 7.26 × 10−8 | |
Be | 6.08 × 10−6 | 9.97 × 10−7 | 6.85 × 10−6 | 1.52 × 10−6 | 3.86 × 10−6 | 1.13 × 10−6 | 3.87 × 10−6 | 1.10 × 10−7 | |
Total-CR | 3.52 × 10−5 | 8.60 × 10−5 | 5.59 × 10−5 | 1.45 × 10−4 | 1.43 × 10−5 | 3.15 × 10−5 | 4.53 × 10−5 | 1.21 × 10−4 |
This Study | China (2014) [58] | Ethiopia (2020) [62] | India (2022) [63] | ||||||
---|---|---|---|---|---|---|---|---|---|
Adults | Children | Adults | Children | Adults | Children | Adults | Children | ||
HI | Charcoal | 1.61 | 6.04 | 0.04 | 0.06 | ||||
Wood | 2.31 | 5.09 | |||||||
ICS | 1.11 | 2.69 | |||||||
IST | 0.35 | 0.51 | |||||||
Rds | 0.55 | 1.35 | |||||||
Biomass | 37.79 | 37.79 | |||||||
N-gas/smoking | 2.55 | 2.55 | |||||||
Kerosene | 0.17 | 0.29 | |||||||
Electricity | 0.02 | 0.04 | |||||||
Total-CR | Charcoal | 3.52 × 10−5 | 8.60 × 10−5 | 2 × 10−7 | 5 × 10−7 | ||||
Wood | 5.59 × 10−5 | 1.45 × 10−4 | |||||||
ICS | 4.53 × 10−5 | 1.21 × 10−4 | |||||||
IST | 1.43 × 10−5 | 3.15 × 10−5 | |||||||
Rds | 2.63 × 10−5 | 7.51 × 10−5 | |||||||
Biomass | 7 × 10−3 | 7 × 10−4 | |||||||
N-gas/smoking | 3.35 × 10−4 | 8.38 × 10−5 | |||||||
Kerosene | 8 × 10−7 | 2 × 10−7 | |||||||
Electricity | 2 × 10−7 | 3 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidibe, A.; Sakamoto, Y.; Murano, K.; Sato, K.; Yuba, A.; Futami, M.; Koita, O.A.; Traore, I.; Kajii, Y. Chemical Characterization and Health Risk Assessment of Particulate Matter from Household Activities in Bamako, Mali, Western Sub-Saharan Africa. Atmosphere 2022, 13, 1290. https://doi.org/10.3390/atmos13081290
Sidibe A, Sakamoto Y, Murano K, Sato K, Yuba A, Futami M, Koita OA, Traore I, Kajii Y. Chemical Characterization and Health Risk Assessment of Particulate Matter from Household Activities in Bamako, Mali, Western Sub-Saharan Africa. Atmosphere. 2022; 13(8):1290. https://doi.org/10.3390/atmos13081290
Chicago/Turabian StyleSidibe, Alimata, Yosuke Sakamoto, Kentaro Murano, Keiichi Sato, Akie Yuba, Mari Futami, Ousmane A. Koita, Ibrahim Traore, and Yoshizumi Kajii. 2022. "Chemical Characterization and Health Risk Assessment of Particulate Matter from Household Activities in Bamako, Mali, Western Sub-Saharan Africa" Atmosphere 13, no. 8: 1290. https://doi.org/10.3390/atmos13081290
APA StyleSidibe, A., Sakamoto, Y., Murano, K., Sato, K., Yuba, A., Futami, M., Koita, O. A., Traore, I., & Kajii, Y. (2022). Chemical Characterization and Health Risk Assessment of Particulate Matter from Household Activities in Bamako, Mali, Western Sub-Saharan Africa. Atmosphere, 13(8), 1290. https://doi.org/10.3390/atmos13081290