WHCNS-Veg Modelling of N2O, NH3 and NO3− Dynamics in a Vegetable Production System under Different Fertilization and Irrigation Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Design and Data Collection
2.3. The WHCNS-Veg Model
2.4. Model Calibration and Validation
3. Results
3.1. Model Calibration
3.2. Model Validation
4. Discussion
4.1. Model Performance
4.2. N Input Affected N2O Release, NH3 Volatilization and NO3− Leaching
4.3. Irrigation Approaches Affected N2O and NH3 Release and Nitrate Leaching
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, H.; Lv, H.; Batchelor, W.D.; Lian, X.; Wang, Z.; Lin, S.; Hu, K. Simulating Nitrate and DON Leaching to Optimize Water and N Management Practices for Greenhouse Vegetable Production Systems. Agric. Water Manag. 2020, 241, 106377. [Google Scholar] [CrossRef]
- Zhang, H.; Batchelor, W.D.; Hu, K.; Liang, H.; Han, H.; Li, J. Simulation of N2O Emissions from Greenhouse Vegetable Production under Different Management Systems in North China. Ecol. Model. 2022, 470, 110019. [Google Scholar] [CrossRef]
- Yao, Z.; Yan, G.; Wang, R.; Zheng, X.; Liu, C.; Butterbach-Bahl, K. Drip Irrigation or Reduced N-Fertilizer Rate Can Mitigate the High Annual N2O+NO Fluxes from Chinese Intensive Greenhouse Vegetable Systems. Atmos. Environ. 2019, 212, 183–193. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Gui, D.; Tenuta, M.; Flaten, D.N.; Yin, M.; Zeng, F. Effects of Fertilizer and Irrigation Management on Nitrous Oxide Emission from Cotton Fields in an Extremely Arid Region of Northwestern China. Field Crops Res. 2018, 229, 17–26. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, J.; Wang, L.; Hou, M.; Chen, D. Effects of Fermented Organic Fertilizer Application on Soil N2O Emission under the Vegetable Rotation in Polyhouse. Environ. Res. 2021, 200, 111491. [Google Scholar] [CrossRef]
- Duan, P.; Song, Y.; Li, S.; Xiong, Z. Responses of N2O Production Pathways and Related Functional Microbes to Temperature across Greenhouse Vegetable Field Soils. Geoderma 2019, 355, 113904. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Wang, Y.; Deng, J.; Wang, L. Multiple-Year Nitrous Oxide Emissions from a Greenhouse Vegetable Field in China: Effects of Nitrogen Management. Sci. Total Environ. 2018, 616–617, 1139–1148. [Google Scholar] [CrossRef]
- Gu, J.X.; Guo, H.J.; Xiang, H.Y. The utility of a boundary line approach for simulating denitrification and nitrous oxide emissions from a Regosol under summer maize-winter wheat crop rotation in Southwest China. Geoderma Reg. 2020, 20, e00252. [Google Scholar] [CrossRef]
- Gu, B.J.; Ju, X.T.; Chang, J. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef]
- Li, Y.K.; Wu, X.P.; Wu, Q.F.; Wu, H.J. Effects of irrigation and nitrogen application on ammonia volatilization loss from vegetable fields under greenhouse cultivation. J. Plant Nutr. Fertil. 2016, 22, 949–957. [Google Scholar]
- Luo, W.; Cheng, Y.Z.; Chen, Z.J.; Zhou, J.B. Ammonia volatilization under different nitrogen and water treatments of tomato-watermelon rotation system in solar greenhouse in Losses Plateau, China. Chin. J. Appl. Ecol. 2019, 30, 1278–1286. [Google Scholar]
- Zhang, J.; Li, H.; Deng, J.; Wang, L. Assessing Impacts of Nitrogen Management on Nitrous Oxide Emissions and Nitrate Leaching from Greenhouse Vegetable Systems Using a Biogeochemical Model. Geoderma 2021, 382, 114701. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, K.; Fan, Z.; Wei, Y.; Lin, S.; Wang, J. Simulating the Fate of Nitrogen and Optimizing Water and Nitrogen Management of Greenhouse Tomato in North China Using the EU-Rotate_N Model. Agric. Water Manag. 2013, 128, 72–84. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, K.; Zhang, L.; Ji, Y.; Qin, W. Exploring Optimal Catch Crops for Reducing Nitrate Leaching in Vegetable Greenhouse in North China. Agric. Water Manag. 2019, 212, 273–282. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.; Batchelor, W.D.; Chen, Q.; Liang, B.; Li, B. Modeling Dissolved Organic Nitrogen Dynamics under Different N Management Practices for Intensive Greenhouse Production Using an Improved WHCNS_veg Model. Geoderma 2019, 337, 1039–1050. [Google Scholar] [CrossRef]
- Liang, H.; Yang, S.; Xu, J.; Hu, K. Modeling Water Consumption, N Fates, and Rice Yield for Water-Saving and Conventional Rice Production Systems. Soil Tillage Res. 2021, 209, 104944. [Google Scholar] [CrossRef]
- Jiang, L.; He, W.; Jiang, R.; Zhang, J.; Duan, Y.; He, P. Using DNDC and WHCNS_Veg to Optimize Management Strategies for Improving Potato Yield and Nitrogen Use Efficiency in Northwest China. Agronomy 2021, 11, 1858. [Google Scholar] [CrossRef]
- Leghari, S.J.; Hu, K.; Wei, Y.; Wang, T.; Bhutto, T.A.; Buriro, M. Modelling Water Consumption, N Fates and Maize Yield under Different Water-Saving Management Practices in China and Pakistan. Agric. Water Manag. 2021, 255, 107033. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Ji, B.; Liu, G.; Xue, M. An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in serniarid grassland. Adv. Atmos. Sci. 2003, 20, 119–127. [Google Scholar] [CrossRef]
- Ni, B.; Xu, X.; Zhang, W.; Yang, X.; Liu, R.; Wang, L.; Wu, W.; Meng, F. Reduced Fertilization Mitigates N2O Emission and Drip Irrigation Has No Impact on N2O and NO Emissions in Plastic-Shed Vegetable Production in Northern China. Sci. Total Environ. 2022, 824, 153976. [Google Scholar] [CrossRef]
- Wang, C.; Sun, H.F.; Xu, C.H.; Wang, Z.F.; Zhang, J.N.; Zhang, X.X.; Chen, C.H.; Zhou, S. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation. Sci. Agric. Sin. 2022, 55, 123–133. [Google Scholar]
- Liang, H.; Hu, K.; Batchelor, W.D.; Qin, W.; Li, B. Developing a Water and Nitrogen Management Model for Greenhouse Vegetable Production in China: Sensitivity Analysis and Evaluation. Ecol. Model. 2018, 367, 24–33. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Ma, L.W.; Terry, A. The Root Zone Water Quality Model; Water Resources Publications LLC: Highlands Ranch, CO, USA, 2000. [Google Scholar]
- Simunek, J.; Saito, H.; Sakai, M.; Genuchten, T.M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; University of California: Los Angeles, CA, USA, 2008. [Google Scholar]
- Sabbagh, G.J.; Geleta, S.; Elliott, R.L.; Williams, J.R.; Griggs, R.H. Modification of EPIC to Simulate Pesticide Activities: EPIC-PST. Am. Soc. Agric. Eng. 1991, 34, 1683–1692. [Google Scholar] [CrossRef]
- Hansen, S.; Jensen, H.E.; Nielsen, N.E. DAISY, Soil Plant Atmosphere System Model; NPO Report No. A; Miljoeministeriet: Copenhagen, Denmark, 1990; Volume 10, pp. 1–276. [Google Scholar]
- Rahn, C.R.; Zhang, K.; Lillywhite, R.; Ramos, C.; Doltra, J.; de Paz, J.M.; Riley, H.; Fink, M.; Nendel, C.; Thorup-Kristensen, K.; et al. EU-Rotate_N—A Decision Support System—To Predict EnvironMental and Economic Consequences of the Management of Nitrogen Fertiliser in Crop Rotations. Eur. J. Hortic. Sci. 2010, 75, 20–32. [Google Scholar]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. Daycent and Its Land Surface Submodel: Description and Testing. Glob. Planet. Chang. 1998, 19, 35–48. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.; Batchelor, W.D.; Qi, Z.; Li, B. An Integrated Soil-Crop System Model for Water and Nitrogen Management in North China. Sci. Rep. 2016, 6, 25755. [Google Scholar] [CrossRef]
- Smith, C.J.; Macdonald, B.C.T.; Xing, H.; Denmead, O.T.; Wang, E.; McLachlan, G.; Tuomi, S.; Turner, D.; Chen, D. Measurements and APSIM Modelling of Soil C and N Dynamics. Soil Res. 2020, 58, 41–61. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Luo, Z.; Wang, E.; Wang, G.; Zhou, H.; Li, H.; Xu, S. Reducing N2O Emissions While Maintaining Yield in a Wheat–Maize Rotation System Modelled by APSIM. Agric. Syst. 2021, 194, 103277. [Google Scholar] [CrossRef]
- Qasim, W.; Xia, L.; Lin, S.; Wan, L.; Zhao, Y.; Butterbach-Bahl, K. Global Greenhouse Vegetable Production Systems Are Hotspots of Soil N2O Emissions and Nitrogen Leaching: A Meta-Analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef]
- Ni, B.; Zhang, W.; Xu, X.; Wang, L.; Bol, R.; Wang, K.; Hu, Z.; Zhang, H.; Meng, F. Exponential Relationship between N2O Emission and Fertilizer Nitrogen Input and Mechanisms for Improving Fertilizer Nitrogen Efficiency under Intensive Plastic-Shed Vegetable Production in China: A Systematic Analysis. Agric.Ecosyst. Environ. 2021, 312, 107353. [Google Scholar] [CrossRef]
- Xie, H.K.; Li, G.C.; Xu, C.; Ding, W.H.; Jiang, Y.Q.; Wang, L.G.; Li, H. Effect of Irrigation Pattern on Soil N2O emissions and inter annual variability in Greenhouse Vegetable Field. J. Agro-Environ. Sci. 2018, 37, 825–832. [Google Scholar]
- Yu, Y.J.; Zhu, B.; Jing, G.J. N2O Emission from Soil-vegetable System and Impact Factors Chengdupain of Sichuan Basin. China Environ. Sci. 2008, 28, 313–318. [Google Scholar]
- Yang, S.L.; Zhu, A.N.; Zhang, J.B.; Chen, X.M.; Zhu, Q.G. Ammonia Volatilization Loss and Its Affecting Factors under Different Amounts and Ways of N Application in Field. Arid Zone Res. 2010, 27, 415–421. [Google Scholar]
- Han, B.; Ye, X.; Li, W.; Zhang, X.; Zhang, Y.; Lin, X.; Zou, H. The Effects of Different Irrigation Regimes on Nitrous Oxide Emissions and Influencing Factors in Greenhouse Tomato Fields. J. Soils Sediments 2017, 17, 2457–2468. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Rolston, D.E.; Horwath, W.R. Cover Cropping Affects Soil N2O and CO2 Emissions Differently Depending on Type of Irrigation. Agric. Ecosyst. Environ. 2010, 137, 251–260. [Google Scholar] [CrossRef]
- Sánchez-Martín, L.; Arce, A.; Benito, A.; Garcia-Torres, L.; Vallejo, A. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biol. Biochem. 2008, 40, 1698–1706. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The Potential of Organic Fertilizers and Water Management to Reduce N2O Emissions in Mediterranean Climate Cropping Systems. A Review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef]
- Kennedy, T.L.; Suddick, E.C.; Six, J. Reduced Nitrous Oxide Emissions and Increased Yields in California Tomato Cropping Systems under Drip Irrigation and Fertigation. Agric. Ecosyst. Environ. 2013, 170, 16–27. [Google Scholar] [CrossRef]
- Wang, X.J.; Chen, L.; Wang, Y.Q.; Li, L.; Zhu, J.Y.; Zhao, S.L.; Liu, X.W.; Li, G.H. Effect of Drip Irrigation and Fertilizer N input amount on NH3 volatilization in Paddy Field. Xinjiang Farm Res. Sci. Technol. 2017, 4, 3–5. [Google Scholar]
- White, R.E.; Cai, G.; Chen, D.; Fan, X.H.; Pacholski, A.; Zhu, Z.L.; Ding, H. Gaseous Nitrogen Losses from Urea Applied to Maize on a Calcareous Fluvo-Aquic Soil in the North China Plain. Soil Res. 2002, 40, 737. [Google Scholar] [CrossRef]
Vegetable | Treatment | Manure kg N ha−1 | Mineral Fertilizer kg N ha−1 | Irrigation | Irrigation Amount (mm) | ||
---|---|---|---|---|---|---|---|
N | P2O5 | K2O | |||||
Cucumber | CK | 500 | 0 | 120 | 200 | Flood | 365 |
FP | 500 | 700 | 120 | 200 | Flood | 365 | |
FPD | 500 | 700 | 120 | 200 | Drip | 256 | |
OPTD | 500 | 350 | 120 | 200 | Drip | 256 | |
Tomato | CK | 800 | 0 | 200 | 300 | Flood | 407 |
FP | 800 | 750 | 200 | 300 | Flood | 407 | |
FPD | 800 | 750 | 200 | 300 | Drip | 285 | |
OPTD | 800 | 375 | 200 | 300 | Drip | 285 |
Soil Layer (cm) | SOM (g kg−1) | Bulk Density (g cm−3) | Clay Content (%) | θs (cm3·cm−3) | Ks (cm·d−1) |
---|---|---|---|---|---|
0–20 | 14.31 | 1.25 | 21.2 | 0.47 | 23.77 |
20–40 | 10.86 | 1.25 | 21.2 | 0.40 | 30.10 |
40–60 | 6.51 | 1.24 | 22.4 | 0.38 | 18.84 |
60–80 | 4.01 | 1.36 | 24.9 | 0.37 | 24.64 |
80–100 | 0.70 | 1.33 | 21.3 | 0.38 | 28.33 |
Vegetable | Treatments | SWC (cm3 cm−3) | SNC (kg N ha−1) | N2O (kg N ha−1) | NH3 (kg N ha−1) | ST (°C) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | ||
Cucumber | FP | 0.04 | 0.75 | 9.6–18.1 | 0.63 | 0.023 | 0.74 | 0.34 | 0.65 | 2.01 | 0.86 |
FPD | 0.03 | 0.64 | 5.6–19.6 | 0.58 | 0.037 | 0.72 | 0.34 | 0.57 | - | - | |
OPTD | 0.03 | 0.67 | 9.3–22.2 | 0.58 | 0.027 | 0.67 | 0.29 | 0.59 | - | - | |
CK | 0.04 | 0.69 | 10.3–23.4 | 0.77 | 0.033 | 0.69 | 0.27 | 0.54 | - | - | |
Tomato | FP | 0.05 | 0.71 | 14.3–25.3 | 0.67 | 0.019 | 0.73 | 0.12 | 0.56 | 2.77 | 0.81 |
FPD | 0.03 | 0.69 | 17.4–30.1 | 0.68 | 0.016 | 0.68 | 0.37 | 0.55 | - | - | |
OPTD | 0.02 | 0.69 | 14.3–32.1 | 0.65 | 0.011 | 0.71 | 0.34 | 0.57 | - | - | |
CK | 0.03 | 0.71 | 16.3–29.6 | 0.66 | 0.015 | 0.68 | 0.46 | 0.55 | - | - |
Parameter | Description | Cucumber | Tomato | |
---|---|---|---|---|
Crop parameters | Tsum | Accumulated temperature (°C) | 1100 | 1440 |
Tbase | Base temperature (°C) | 14.5 | 14.8 | |
CDM | Dry matter content (%) | 4 | 6 | |
Nmin | Minimum N content in plant (%) | 1.98 | 3 | |
N transformation parameters | Vn | Maximum nitrification rate (mg L−1 d−1) | 30 | 30 |
Kn | Half saturation coefficient (mg L−1) | 100 | 100 | |
Kd | Denitrification kinetic constant (mg mg−1) | 0.5 | 0.5 | |
Ad | An empirical proportionality factor | 0.1 | 0.1 | |
Kv | First-order kinetic constant for volatilization (d−1) | 0.025 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Xie, H.; Zhang, J.; Li, H. WHCNS-Veg Modelling of N2O, NH3 and NO3− Dynamics in a Vegetable Production System under Different Fertilization and Irrigation Regimes. Atmosphere 2022, 13, 1289. https://doi.org/10.3390/atmos13081289
Li G, Xie H, Zhang J, Li H. WHCNS-Veg Modelling of N2O, NH3 and NO3− Dynamics in a Vegetable Production System under Different Fertilization and Irrigation Regimes. Atmosphere. 2022; 13(8):1289. https://doi.org/10.3390/atmos13081289
Chicago/Turabian StyleLi, Guihua, Haikuan Xie, Jianfeng Zhang, and Hu Li. 2022. "WHCNS-Veg Modelling of N2O, NH3 and NO3− Dynamics in a Vegetable Production System under Different Fertilization and Irrigation Regimes" Atmosphere 13, no. 8: 1289. https://doi.org/10.3390/atmos13081289
APA StyleLi, G., Xie, H., Zhang, J., & Li, H. (2022). WHCNS-Veg Modelling of N2O, NH3 and NO3− Dynamics in a Vegetable Production System under Different Fertilization and Irrigation Regimes. Atmosphere, 13(8), 1289. https://doi.org/10.3390/atmos13081289