Evaluating the Atmospheric Loss of H2 by NO3 Radicals: A Theoretical Study
Abstract
:1. Introduction
2. Theoretical Methodologies
2.1. Quantum Chemical Calculations
2.2. Statistical Kinetics Calculations
3. Results and Discussion
Reaction Mechanisms and Energetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. Intergovernmental Panel on Climate Change (IPCC) Report. 2021. Available online: https://www.unep.org/resources/report/climate-change-2021-physical-science-basis-working-group-i-contribution-sixth (accessed on 25 July 2022).
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- European Commission; Directorate General for Research. Hydrogen Energy and Fuel Cells: A Vision of Our Future: Final Report of the High Level Group; Official Publications of the European Communities: Luxembourg, 2003; ISBN 92-894-5589-6. [Google Scholar]
- Kleijn, R.; van der Voet, E. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration. Renew. Sustain. Energy Rev. 2010, 14, 2784–2795. [Google Scholar] [CrossRef]
- Tromp, T.K.; Shia, R.-L.; Allen, M.; Eiler, J.M.; Yung, Y.L.J.S. Potential environmental impact of a hydrogen economy on the stratosphere. Science 2003, 300, 1740–1742. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Diehl, T.; Brasseur, G.P.; Zittel, W. Air pollution and climate-forcing impacts of a global hydrogen economy. Science 2003, 302, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Prather, M.J. An environmental experiment with H2? Science 2003, 302, 581–582. [Google Scholar] [CrossRef]
- Warwick, N.J.; Bekki, S.; Nisbet, E.G.; Pyle, J.A. Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model. Geophys. Res. Lett. 2004, 31, L05107. [Google Scholar] [CrossRef]
- Wang, D.; Jia, W.; Olsen, S.C.; Wuebbles, D.J.; Dubey, M.K.; Rockett, A.A. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere—Part 2: Stratospheric ozone. Atmos. Chem. Phys. 2013, 13, 6139–6150. [Google Scholar] [CrossRef]
- Ehhalt, D.H.; Rohrer, F. The tropospheric cycle of H2: A critical review. Tellus B Chem. Phys. Meteorol. 2009, 61, 500–535. [Google Scholar] [CrossRef]
- Novelli, P.C.; Lang, P.M.; Masarie, K.A.; Hurst, D.F.; Myers, R.; Elkins, J.W. Molecular hydrogen in the troposphere: Global distribution and budget. J. Geophys. Res. Atmos. 1999, 104, 30427–30444. [Google Scholar] [CrossRef]
- Patterson, J.D.; Aydin, M.; Crotwell, A.M.; Pétron, G.; Severinghaus, J.P.; Krummel, P.B.; Langenfelds, R.L.; Saltzman, E.S. H2 in Antarctic firn air: Atmospheric reconstructions and implications for anthropogenic emissions. Proc. Natl. Acad. Sci. USA 2021, 118, e2103335118. [Google Scholar] [CrossRef]
- Ruscic, B.; Bross, D.H. Active Thermochemical Tables (ATcT) Values Based on Ver. 1.122r of the Thermochemical Network. Available online: ATcT.anl.gov (accessed on 4 July 2022).
- Burkholder, J.B.; Sander, S.P.; Abbatt, J.P.D.; Barker, J.R.; Cappa, C.D.; Crounse, J.D.; Dibble, T.S.; Huie, R.E.; Kolb, C.E.; Kyrilo, M.J.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 19; Jet Propulsion Laboratory, National Aeronautics and Space: Pasadena, CA, USA, 2020. [Google Scholar]
- Wang, X.; Jacob, D.J.; Eastham, S.D.; Sulprizio, M.P.; Zhu, L.; Chen, Q.; Alexander, B.; Sherwen, T.; Evans, M.J.; Lee, B.H. The role of chlorine in global tropospheric chemistry. Atmos. Chem. Phys. 2019, 19, 3981–4003. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. (Eds.) Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 2000; pp. 86–129. [Google Scholar]
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosa-Mas, C.E.; Hjorth, J.; le Bras, G.; Moortgat, G.K.; Perner, D.; Poulet, G. The nitrate radical-physics, chemistry, and the atmosphere. Atmos. Environ. Part A Gen. Top. 1991, 25, 1–203. [Google Scholar] [CrossRef]
- Ng, N.L.; Brown, S.S.; Archibald, A.T.; Atlas, E.; Cohen, R.C.; Crowley, J.N.; Day, D.A.; Donahue, N.M.; Fry, J.L.; Fuchs, H. Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys. 2017, 17, 2103–2162. [Google Scholar] [CrossRef] [PubMed]
- Appel, B.R.; Wall, S.M.; Tokiwa, Y.; Haik, M. Simultaneous nitric-acid, particulate nitrate and acidity measurements in ambient air. Atmos. Environ. 1980, 14, 549–554. [Google Scholar] [CrossRef]
- Galloway, J.N.; Likens, G.E. Acid precipitation-the importance of nitric acid. Atmos. Environ. 1981, 15, 1081–1085. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian Software Package, 2009, for Quantum Chemical Calculations. Available online: https://www.researchgate.net/publication/260433987_Gaussian_09_Revision_A02 (accessed on 25 July 2022).
- Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 1999, 110, 7650–7657. [Google Scholar] [CrossRef]
- Curtiss, A.; Raghavachari, K.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998, 109, 7764–7776. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular-orbital methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Romanias, M.N.; Ravishankara, A.R.; Zaras, A.M.; Dagaut, P.; Stanton, J.F. The atmospheric impact of the reaction of N2O with NO3: A theoretical study. Chem. Phys. Lett. 2019, 731, 136605. [Google Scholar] [CrossRef]
- Thorpe, J.H.; Lopez, C.A.; Nguyen, T.L.; Baraban, J.H.; Bross, D.H.; Ruscic, B.; Stanton, J.F. A modified recipe for computational efficiency. J. Chem. Phys. 2019, 150, 224102. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.A.; Cheng, L.; Harding, M.E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.-C.; Szalay, P.G.; Gauss, J.; Stanton, J.F. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J. Chem. Phys. 2020, 152, 214108. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.H. Semiclassical Theory for Non-Separable Systems—Construction of Good Action-Angle Variables for Reaction-Rate Constants. Faraday Discuss. Chem. Soc. 1977, 62, 40–46. [Google Scholar] [CrossRef]
- Miller, W.H.; Hernandez, R.; Handy, N.C.; Jayatilaka, D.; Willetts, A. Abinitio Calculation of Anharmonic Constants for a Transition-State, with Application to Semiclassical Transition-State Tunneling Probabilities. Chem. Phys. Lett. 1990, 172, 62–68. [Google Scholar] [CrossRef]
- Hernandez, R.; Miller, W.H. Semiclassical Transition-State Theory—a New Perspective. Chem. Phys. Lett. 1993, 214, 129–136. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Barker, J.R. Sums and Densities of Fully Coupled Anharmonic Vibrational States: A Comparison of Three Practical Methods. J. Phys. Chem. A 2010, 114, 3718–3730. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.; Stanton, J.F.; Barker, J.R. Ab Initio Reaction Rate Constants Computed Using Semiclassical Transition-State Theory: HO + H2 → H2O + H and Isotopologues. J. Phys. Chem. A 2011, 115, 5118–5126. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.H. Tunneling Corrections to Unimolecular Rate Constants, with Application to Formaldehyde. J. Am. Chem. Soc. 1979, 101, 6810–6814. [Google Scholar] [CrossRef]
- Bowman, J.M. Reduced Dimensionality Theory of Quantum Reactive Scattering. J. Phys. Chem. 1991, 95, 4960–4968. [Google Scholar] [CrossRef]
- Balakrishnan, N. Quantum mechanical investigation of the O + H2 → OH + H reaction. J. Chem. Phys. 2003, 119, 195–199. [Google Scholar] [CrossRef]
- Wang, F.G.; Landau, D.P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 2001, 86, 2050–2053. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.G.; Landau, D.P. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 2001, 64, 056101. [Google Scholar] [CrossRef] [PubMed]
- Basire, M.; Parneix, P.; Calvo, F. Quantum anharmonic densities of states using the Wang-Landau method. J. Chem. Phys. 2008, 129, 081101. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.; Stanton, J.F.; Barker, J.R. A practical implementation of semi-classical transition state theory for polyatomics. Chem. Phys. Lett. 2010, 499, 9–15. [Google Scholar] [CrossRef]
- Baer, T.; Hase, W.L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Sander, S.P.; Friedl, R.R.; Barker, J.R.; Golden, D.M.; Kurylo, M.J.; Wine, P.H.; Abbatt, J.P.D.; Burkholder, J.B.; Kolb, C.E.; Moorgat, G.K. Jet Propulsion Laboratory (JPL) Science. Available online: https://science.jpl.nasa.gov/ (accessed on 4 July 2022).
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—Gas phase reactions of inorganic halogens. J. Atmos. Chem. Phys. 2007, 7, 981–1191. [Google Scholar] [CrossRef]
- Zhou, L.; Ravishankara, A.R.; Brown, S.S.; Zarzana, K.J.; Idir, M.; Daële, V.; Mellouki, A. Kinetics of the reactions of NO3 radical with alkanes. Phys. Chem. Chem. Phys. 2019, 21, 4246–4257. [Google Scholar] [CrossRef]
Term | Barrier Height |
---|---|
δESCF | −10.89 |
δECCSD(T) | 81.57 |
δET-(T) | −2.39 |
δE(Q)-T | 4.48 |
δECore | 0.00 |
δEScalar | –0.07 |
δEZPE | 2.85 |
δEDBOC | 1.14 |
δESpin-orbit | 0.00 |
mHEAT | 76.69 ± 2 |
Reaction | ΔrHo (0 K) in kJ mol−1 | Va (kJ mol−1) | k (298 K) cm3 s−1 | |
---|---|---|---|---|
ATcT | G3B3 | |||
H2 + NO3 → HNO3 + H | 12.2 ± 0.3 | 12.8 | (76.7 a), 74.6 b | <10−22 a |
HCl + NO3 → HNO3 + Cl | 7.7 ± 0.5 | 1.31 | 57.4 b | <5 × 10−17 c |
CH4 + NO3 → HNO3 + CH3 | 12.5 ± 0.3 | 8.2 | 52.2 b | 2 × 10−20 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanias, M.N.; Nguyen, T.L. Evaluating the Atmospheric Loss of H2 by NO3 Radicals: A Theoretical Study. Atmosphere 2022, 13, 1313. https://doi.org/10.3390/atmos13081313
Romanias MN, Nguyen TL. Evaluating the Atmospheric Loss of H2 by NO3 Radicals: A Theoretical Study. Atmosphere. 2022; 13(8):1313. https://doi.org/10.3390/atmos13081313
Chicago/Turabian StyleRomanias, Manolis N., and Thanh Lam Nguyen. 2022. "Evaluating the Atmospheric Loss of H2 by NO3 Radicals: A Theoretical Study" Atmosphere 13, no. 8: 1313. https://doi.org/10.3390/atmos13081313
APA StyleRomanias, M. N., & Nguyen, T. L. (2022). Evaluating the Atmospheric Loss of H2 by NO3 Radicals: A Theoretical Study. Atmosphere, 13(8), 1313. https://doi.org/10.3390/atmos13081313