The Southern Hemisphere Blocking Index Revisited
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Distribution of Blockings Disregarding Their Duration
3.1.1. Annual and Seasonal Distributions
3.1.2. Monthly Distributions
3.2. Duration
3.2.1. By Longitude
3.2.2. By Region
3.3. Trends
3.4. A Radiosonde-Derived Blocking Index
4. Discussion and Concluding Remarks
- Blockings in the SH were all-year phenomena, with maxima in JJA;
- The surroundings of the DL were the primary area for their occurrence both annually and seasonally; the longest and strongest events also took place there;
- Second- and third-rank maxima were located in SSA and in the east of the GM; blockings were more prone to occur in SSA during MAM and SON;
- If the SH was divided into three different regions, the overall longest events occurred in the PAC during JJA;
- Wave 1 had the highest contribution, at both 35° S and 50° S, in most of the cases;
- Detected trends in the intensity were mostly negative (i.e., stronger events), and trends in the frequency of occurrence were upward in the western Pacific and in the eastern Atlantic and downward in the central Pacific and in the western Atlantic; all these trends are season-dependent;
- The RBI proved to be suitable for the description of blockings in the SSA area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colucci, S.J. Anticyclones. In Encyclopedia of the Atmospheric Sciences; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Associated Press: London, UK, 2003; Volume 1, pp. 142–146. [Google Scholar]
- Barry, R.G.; Carleton, A.M. Large-scale circulation and climate. In Synoptic and Dynamic Climatology; Routledge: London, UK, 2001; pp. 263–357. [Google Scholar]
- Lupo, A.R.; Mokhov, I.I.; Akperov, M.G.; Chernokulsky, A.V.; Athar, H. A Dynamic Analysis of the Role of the Planetary- and Synoptic-Scale in the Summer of 2010 Blocking Episodes over the European Part of Russia. Adv. Meteorol. 2012, 2012, 584257. [Google Scholar] [CrossRef] [Green Version]
- Pezza, A.B.; van Rensch, P.; Cai, W. Severe heat waves in Southern Australia: Synoptic climatology and large scale connections. Clim. Dyn. 2012, 38, 209–224. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yao, Y.; Luo, D.; Zhong, L. The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018. Atmosphere 2019, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Salinger, M.J.; Renwick, J.; Behrens, E.; Mullan, A.B.; Diamond, H.J.; Sirguey, P.; Smith, R.O.; Trought, M.C.T.; Alexander, L.V.; Cullen, N.J.; et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 2019, 14, 044023. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Gupta, A.S.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Cai, W.; Xu, X.; Cheng, X.; Wei, F.; Qiu, X.; Zhu, W. Impact of “blocking” structure in the troposphere on the wintertime persistent heavy air pollution in northern China. Sci. Total Environ. 2020, 741, 140325. [Google Scholar] [CrossRef]
- Berbery, E.H.; Núñez, M.N. An Observational and Numerical Study of Blocking Episodes near South America. J. Clim. 1989, 2, 1352–1361. [Google Scholar] [CrossRef]
- Kautz, L.-A.; Martius, O.; Pfahl, S.; Pinto, J.G.; Ramos, A.M.; Sousa, P.M.; Woollings, T. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—A review. Weather Clim. Dyn. 2022, 3, 305–336. [Google Scholar] [CrossRef]
- Joly, A.; Ayrault, F.; Malardel, S. Cyclones, Extra Tropical. In Encyclopedia of the Atmospheric Sciences; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Associated Press: London, UK, 2003; Volume 2, pp. 594–615. [Google Scholar]
- Bluestein, H.B. The Behavior of Synoptic-Scale, Extratropical Systems. In Synoptic-Dynamic Meteorology in Midlatitudes; Oxford University Press: New York, NY, USA, 1993; Volume II, Observations and Theory of Weather Systems, pp. 3–237. [Google Scholar]
- Lejenäs, H. Characteristics of southern hemisphere blocking as determined from a time series of observational data. Q. J. R. Meteorol. Soc. 1984, 110, 967–979. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C.; Fogli, P.G.; Manzini, E.; Gualdi, S.; Navarra, A. European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Clim. Dyn. 2014, 43, 71–85. [Google Scholar] [CrossRef]
- Knox, J.L.; Hay, J.E. Blocking signatures in the Northern Hemisphere: Rationale and identification. Atmos. Ocean 1984, 22, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Bates, G.T.; Meehl, G.A. The Effect of CO2 Concentration on the Frequency of Blocking in a General Circulation Model Coupled to a Simple Mixed Layer Ocean Model. Mon. Weather Rev. 1986, 114, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; García-Herrera, R.; Trigo, R.M. Application of blocking diagnosis methods to General Circulation Models. Part I: A novel detection scheme. Clim. Dyn. 2010, 35, 1373–1391. [Google Scholar] [CrossRef]
- Hoskins, B.J. Towards a PV-θ view of the general circulation. Tellus A Dyn. Meteorol. Oceanogr. 1991, 43, 27–36. [Google Scholar] [CrossRef]
- Pelly, J.P.; Hoskins, B.J. A New Perspective on Blocking. J. Atmos. Sci. 2003, 60, 743–755. [Google Scholar] [CrossRef]
- Rex, D.F. Blocking Action in the Middle Troposphere and its Effect Upon Regional Climate. I: An Aerological Study of Blocking Action. Tellus 1950, 2, 196–211. [Google Scholar] [CrossRef] [Green Version]
- Treidl, R.A.; Birch, E.C.; Sajecki, P. Blocking action in the northern hemisphere: A Climatological study. Atmos. Ocean 1981, 19, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Lejenäs, H.; Økland, H. Characteristics of northern hemisphere blocking as determined from a long time series of observational data. Tellus A Dyn. Meteorol. Oceanogr. 1983, 35, 350–362. [Google Scholar] [CrossRef]
- Tibaldi, S.; Molteni, F. On the operational predictability of blocking. Tellus A Dyn. Meteorol. Oceanogr. 1990, 42, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Kaas, E.; Branstator, G. The Relationship between a Zonal Index and Blocking Activity. J. Atmos. Sci. 1993, 50, 3061–3077. [Google Scholar] [CrossRef] [Green Version]
- Sausen, R.; König, W.; Sielmann, F. Analysis of blocking events from observations and ECHAM model simulations. Tellus A Dyn. Meteorol. Oceanogr. 1995, 47, 421–438. [Google Scholar] [CrossRef] [Green Version]
- Wiedenmann, J.M.; Lupo, A.R.; Mokohov, I.I.; Tikhonova, E.A. The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres: Block Intensity as a Diagnostic. J. Clim. 2002, 15, 3459–3473. [Google Scholar] [CrossRef] [Green Version]
- Diao, Y.; Li, J.; Luo, D. A New Blocking Index and Its Application: Blocking Action in the Northern Hemisphere. J. Clim. 2006, 19, 4819–4839. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, B.-M. In Search of Winter Blocking in the Western North Pacific Ocean. Geophys. Res. Lett. 2019, 46, 9271–9280. [Google Scholar] [CrossRef]
- Barnes, E.A.; Dunn-Sigouin, E.; Masato, G.; Woollings, T. Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett. 2014, 41, 638–644. [Google Scholar] [CrossRef]
- Lejenäs, H. A comparative study of southern hemisphere blocking during the global weather experiment. Q. J. R. Meteorolog. Soc. 1987, 113, 181–188. [Google Scholar] [CrossRef]
- Renwick, J.A. ENSO-Related Variability in the Frequency of South Pacific Blocking. Mon. Weather Rev. 1998, 126, 3117–3123. [Google Scholar] [CrossRef]
- Alessandro, A.P. Acciones bloqueantes alrededor de los setenta grados oeste en el sur de Sudamérica (Blocking action around seventy degrees west in the south of South America). Meteorológica 2005, 30, 3–25, (In Spanish, abstract in English). [Google Scholar]
- Giacosa, G.; Renom, M.; Barreiro, M. Bloqueos atmosféricos en los océanos Pacífico sudeste y Atlántico Sur y su impacto sobre Uruguay (Atmospheric blockings in the Southeast Pacific and the South Atlantic Oceans and their influence on the climate of Uruguay). Meteorológica 2020, 45, 1–17, (In Spanish, abstract in English). [Google Scholar]
- Kiladis, G.N.; Mo, K.C. Interannual and Intraseasonal Variability in the Southern Hemisphere. In Meteorology of the Southern Hemisphere; Karoly, D.J., Vincent, D.G., Eds.; American Meteorological Society: Boston, MA, USA, 1998; pp. 307–336. [Google Scholar]
- Trenberth, K.E.; Mo, K.C. Blocking in the Southern Hemisphere. Mon. Weather Rev. 1985, 113, 3–21. [Google Scholar] [CrossRef]
- Sinclair, M.R. A Climatology of Anticyclones and Blocking for the Southern Hemisphere. Mon. Weather Rev. 1996, 124, 245–264. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- NCEP/NCAR Reanalysis 1. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 26 June 2022).
- Barry, R.G.; Carleton, A.M. Climate data and their analysis. In Synoptic and Dynamic Climatology; Routledge: London, UK, 2002; pp. 16–106. [Google Scholar]
- Cunnigham, P.; Keyser, D. Jet streaks. In Encyclopedia of the Atmospheric Sciences; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Associated Press: London, UK, 2003; Volume 3, pp. 1043–1055. [Google Scholar]
- Archer, C.L.; Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 2008, 35, L08803. [Google Scholar] [CrossRef]
- Mo, K.C. Quasi-stationary States in the Southern Hemisphere. Mon. Weather Rev. 1986, 114, 808–823. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Ghil, M. Statistics and Dynamics of Persistent Anomalies. J. Atmos. Sci. 1987, 44, 877–902. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Krishna Kumar, K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Don, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and their Relevance for Future Regional Climate Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1217–1308. [Google Scholar]
- Wilks, D.S. Empirical Distributions and Exploratory Data Analysis. In Statistical Methods in the Atmospheric Sciences, 2nd ed.; Dmowska, R., Hartmann, D., Rossby, H.T., Eds.; Academic Press: Burlington, MA, USA, 2006; pp. 23–70. [Google Scholar]
- Frederiksen, J.S. A Unified Three-Dimensional Instability Theory of the Onset of Blocking and Cyclogenesis. J. Atmos. Sci. 1982, 39, 969–982. [Google Scholar]
- Taljaard, J.J. Synoptic Meteorology of the Southern Hemisphere. In Meteorology of the Southern Hemisphere; Newton, C.A., Ed.; American Meteorological Society: Boston, MA, USA, 1972; Volume 13, pp. 139–213. [Google Scholar]
- Escobar, G.; Vargas, W.; Bischoff, S. Wind tides in the Rio de la Plata Estuary: Meteorological Conditions. Int. J. Climatol. 2004, 24, 1159–1169. [Google Scholar] [CrossRef]
- Wyoming Weather Web, Upper Air Observations, Soundings, University of Wyoming. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 7 June 2022).
- Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Rojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.; Kimoto, M.; Meehl, G.A.; et al. Near-term Climate Change: Projections and predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 953–1028. [Google Scholar]
- Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-based Projections and Near-term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 553–672. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP/NCAR 50-Year Reanalysis. Bull. Am. Meteorol. Soc. 2001, 82, 247–267. [Google Scholar] [CrossRef]
35° S | 50° S | Total | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
1 | 666 | 159 | 360 | 250 | 57 | 9 | 1501 |
2 | 209 | 74 | 109 | 86 | 19 | 2 | 499 |
3 | 141 | 48 | 76 | 40 | 8 | 2 | 315 |
4 | 217 | 61 | 105 | 110 | 7 | − | 500 |
5 | 232 | 69 | 108 | 58 | 30 | 1 | 498 |
6 | 145 | 20 | 78 | 40 | 14 | − | 297 |
7 | 52 | 11 | 37 | 13 | 4 | − | 117 |
8 | 11 | 4 | 8 | 5 | 3 | − | 31 |
9 | 1 | 1 | 1 | − | − | − | 3 |
Total | 1674 | 447 | 882 | 602 | 142 | 14 | 3761 |
Duration | Season | Number of Episodes | % of All Episodes | |||||
---|---|---|---|---|---|---|---|---|
Total | PAC | ATL | IND | PAC | ATL | IND | ||
1 | Annual | 13,633 | 12,385 | 870 | 378 | 90.85 | 6.38 | 2.77 |
DJF | 2017 | 1943 | 43 | 31 | 96.33 | 2.13 | 1.54 | |
MAM | 3248 | 2880 | 258 | 110 | 88.67 | 7.94 | 3.39 | |
JJA | 5375 | 4894 | 320 | 161 | 91.05 | 5.95 | 3.00 | |
SON | 2993 | 2668 | 249 | 76 | 89.14 | 8.32 | 2.54 | |
2 | Annual | 6905 | 6475 | 338 | 92 | 93.77 | 4.90 | 1.33 |
DJF | 1051 | 1029 | 14 | 8 | 97.91 | 1.33 | 0.76 | |
MAM | 1618 | 1506 | 88 | 24 | 93.08 | 5.44 | 1.48 | |
JJA | 2841 | 2644 | 153 | 44 | 93.07 | 5.39 | 1.55 | |
SON | 1395 | 1296 | 83 | 16 | 92.90 | 5.95 | 1.15 | |
3 | Annual | 2983 | 2892 | 64 | 27 | 96.95 | 2.15 | 0.91 |
DJF | 422 | 418 | − | 4 | 99.05 | − | 0.95 | |
MAM | 716 | 692 | 18 | 6 | 96.65 | 2.51 | 0.84 | |
JJA | 1362 | 1306 | 39 | 17 | 95.89 | 2.86 | 1.25 | |
SON | 483 | 476 | 7 | − | 98.55 | 1.45 | − | |
4 | Annual | 1259 | 1236 | 18 | 5 | 98.17 | 1.43 | 0.40 |
DJF | 141 | 141 | − | − | 100.00 | − | − | |
MAM | 303 | 298 | 5 | − | 98.35 | 1.65 | − | |
JJA | 640 | 622 | 13 | 5 | 97.19 | 2.03 | 0.78 | |
SON | 175 | 175 | − | − | 100.00 | − | − | |
5 | Annual | 530 | 529 | 1 | − | 99.81 | 0.19 | − |
DJF | 40 | 40 | − | − | 100.00 | − | − | |
MAM | 141 | 141 | − | − | 100.00 | − | − | |
JJA | 288 | 287 | 1 | − | 99.65 | 0.35 | − | |
SON | 61 | 61 | − | − | 100.00 | − | − | |
6 | Annual | 237 | 237 | − | − | 100.00 | − | − |
DJF | 9 | 9 | − | − | 100.00 | − | − | |
MAM | 63 | 63 | − | − | 100.00 | − | − | |
JJA | 138 | 138 | − | − | 100.00 | − | − | |
SON | 27 | 27 | − | − | 100.00 | − | − | |
7 | Annual | 119 | 119 | − | − | 100.00 | − | − |
DJF | 4 | 4 | − | − | 100.00 | − | − | |
MAM | 24 | 24 | − | − | 100.00 | − | − | |
JJA | 73 | 73 | − | − | 100.00 | − | − | |
SON | 18 | 18 | − | − | 100.00 | − | − | |
8 | Annual | 62 | 62 | − | − | 100.00 | − | − |
DJF | 4 | 4 | − | − | 100.00 | − | − | |
MAM | 2 | 2 | − | − | 100.00 | − | − | |
JJA | 49 | 49 | − | − | 100.00 | − | − | |
SON | 7 | 7 | − | − | 100.00 | − | − | |
9 | Annual | 30 | 30 | − | − | 100.00 | − | − |
DJF | 2 | 2 | − | − | 100.00 | − | − | |
JJA | 24 | 24 | − | − | 100.00 | − | − | |
SON | 4 | 4 | − | − | 100.00 | − | − | |
10 | Annual | 10 | 10 | − | − | 100.00 | − | − |
JJA | 8 | 8 | − | − | 100.00 | − | − | |
SON | 2 | 2 | − | − | 100.00 | − | − | |
11 | JJA | 5 | 5 | − | − | 100.00 | − | − |
12 | JJA | 3 | 3 | − | − | 100.00 | − | − |
Longitude | Trend | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BI (m Century−1) | Number of Episodes (Number Century−1) | |||||||||
Season | Season | |||||||||
Annual | DJF | MAM | JJA | SON | Annual | DJF | MAM | JJA | SON | |
130° E | − | − | −136 (10) | − | − | − | − | − | − | − |
140° E | −55 (47) | −110 (13) | −49 (31) | − | − | − | − | − | − | |
150° E | − | − | − | − | − | 19 (56) | − | − | − | − |
170° E | − | 46 (32) | − | − | − | 20 (70) | − | − | − | − |
180° E | −23 (72) | − | − | − | −57 (39) | 33 (72) | − | − | − | − |
170° W | − | − | − | − | − | 33 (70) | − | − | − | − |
150° W | − | 31 (29) | − | − | − | − | − | − | − | −18 (33) |
130° W | − | − | − | − | − | −21 (62) | − | − | − | − |
120° W | − | − | − | − | − | − | − | −14 (28) | − | − |
110° W | − | − | − | − | − | − | −19 (7) | −11 (27) | − | − |
70° W | −53 (34) | − | − | − | − | − | − | − | − | − |
50° W | − | − | − | − | − | − | − | − | − | −7 (8) |
30° W | − | − | − | − | − | − | − | − | − | 9 (8) |
10° W | − | − | − | − | − | − | − | − | 10 (7) | − |
Longitude | Correlation Coefficient | n | |
---|---|---|---|
67.50° W | −0.28 | −0.53 | 9 |
65.00° W | 0.09 | −0.28 | 11 |
62.50° W | 0.46 | 0.41 | 15 |
60.00° W | 0.69 * | 0.77 * | 16 |
57.50° W | 0.61 * | 0.60 * | 18 |
55.00° W | 0.36 | 0.47 * | 23 |
52.50° W | 0.11 | 0.05 | 16 |
50.00° W | −0.37 | −0.50 | 12 |
47.50° W | −0.72 * | −0.77 * | 10 |
45.00° W | −0.74 * | −0.78 * | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuchechen, A.E.; Lakkis, S.G.; Canziani, P.O. The Southern Hemisphere Blocking Index Revisited. Atmosphere 2022, 13, 1343. https://doi.org/10.3390/atmos13091343
Yuchechen AE, Lakkis SG, Canziani PO. The Southern Hemisphere Blocking Index Revisited. Atmosphere. 2022; 13(9):1343. https://doi.org/10.3390/atmos13091343
Chicago/Turabian StyleYuchechen, Adrián E., S. Gabriela Lakkis, and Pablo O. Canziani. 2022. "The Southern Hemisphere Blocking Index Revisited" Atmosphere 13, no. 9: 1343. https://doi.org/10.3390/atmos13091343
APA StyleYuchechen, A. E., Lakkis, S. G., & Canziani, P. O. (2022). The Southern Hemisphere Blocking Index Revisited. Atmosphere, 13(9), 1343. https://doi.org/10.3390/atmos13091343