Fully Dynamic High–Resolution Model for Dispersion of Icelandic Airborne Mineral Dust
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Dynamic Modelling of Icelandic Dust Atmospheric Process
2.2. Parameterization of Dust Emission from Icelandic Sources
2.3. Model Dynamics of Dust Transport
2.4. Model Setup for Case Studies
3. Results
- Horizontal distribution of dust-related parameters evaluated by the model and the MODIS (Moderate Resolution Imaging Spectroradiometer) observations;
- Model cross-section and point-based vertical profiles vs. aerosol extinction coefficient profiles retrieved from the CALIPSO (The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation);
- Model time–height cross-sections of dust concentration for selected locations vs. in situ ceilometers attenuated backscattering profiles;
- Model near-surface concentration vs. in situ particulate matter (PM10) data;
- Air mass back trajectories used as auxiliary information on the analysis of long-range dust transport.
3.1. September 2011 Case—Short–Range Dust Transport Episode
3.2. September 2018 Case—Long–Range Dust Transport Episode
- The aerosol dynamics provided by the model is in good agreement with the observations with a difference within ±1 h in the detection of the main features of the dust event such as beginning, peak concentration, dynamical evolution;
- The model also detects a dust concentration at altitudes above 2.0–2.5 km above sea level, especially on the 21 September 2018, which is not completely consistent with the observations and may be due to either a model overestimation or to the ceilometer’s sensitivity at small dust concentration, which is more common than in case of lidar observations [81].
- The aerosol dynamics provided by the model is in good agreement with the observations for the detection of the largest part of the aerosol event, in the timing of the peak concentration and in the maximum altitude reached by the dust. The most relevant difference is at the end of the event when from the observations keeps a strong signal until 03 UTC on 22 September, while the model shows a smaller concentration already at 00 UTC on the same day;
- The profile comparison shows an almost perfect match between the shape of the attenuated backscattering profiles and the model concentration. This is true both for the altitudes of the layers and for the relative difference in their signals (i.e., attenuated backscatter for the ceilometer and dust concentration for the model).
3.3. October 2019 Case—Long–Range Dust Transport Episode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Particle Size Distribution Observations
Appendix B. MODIS AOD
Appendix C. CALIOP
Appendix D. Lidar/Ceilometer Observations
References
- Thorsteinsson, T.; Gísladóttir, G.; Bullard, J.; McTainsh, G. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland. Atmos. Environ. 2011, 45, 5924–5933. [Google Scholar] [CrossRef]
- Groot Zwaaftink, C.D.; Arnalds, Ó.; Dagsson-Waldhauserova, P.; Eckhardt, S.; Prospero, J.M.; Stohl, A. Temporal and spatial variability of Icelandic dust emissions and atmospheric transport. Atmos. Chem. Phys. 2017, 17, 10865–10878. [Google Scholar] [CrossRef]
- Beckett, F.; Kylling, A.; Sigurðardóttir, G.; von Löwis, S.; Witham, C. Quantifying the mass loading of particles in an ash cloud remobilized from tephra deposits on Iceland. Atmos. Chem. Phys. 2017, 17, 4401–4418. [Google Scholar] [CrossRef]
- Arnalds, O.; Dagsson-Waldhauserova, P.; Olafsson, H. The Icelandic volcanic aeolian environment: Processes and impacts-A review. Aeolian Res. 2016, 20, 176–195. [Google Scholar] [CrossRef]
- Bullard, J.E.; Baddock, M.; Bradwell, T.; Crusius, J.; Darlington, E.; Gaiero, D.; Gassó, S.; Gisladottir, G.; Hodgkins, R.; McCulloch, R.; et al. High Latitude Dust in the Earth System. Rev. Geophys. 2016, 54, 447–485. [Google Scholar] [CrossRef]
- Thordarson, T.; Höskuldsson, Á. Postglacial volcanism in Iceland. Jökull 2008, 58, 197–228. [Google Scholar]
- Arnalds, O. The Soils of Iceland. In World Soils Book Series; Springer: Dordrecht, Germany, 2015; pp. 134–142. [Google Scholar]
- Groot Zwaaftink, C.D.; Grythe, H.; Skov, A.; Stohl, A. Substantial contribution of northern high-latitude sources to mineral dust in the Arctic. J. Geophys. Res. Atmos. 2016, 121, 13678–13697. [Google Scholar] [CrossRef]
- Boy, M.; Thomson, E.S.; Navarro, J.-C.A.; Arnalds, O.; Batchvarova, E.; Bäck, J.; Berninger, F.; Bilde, M.; Brasseur, Z.; Dagsson-Waldhauserova, P.; et al. Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmos. Chem. Phys. 2019, 19, 2015–2061. [Google Scholar] [CrossRef]
- Bachelder, J.; Cadieux, M.; Liu-Kang, C.; Lambert, P.; Filoche, A.; Aparecida Galhardi, J.; Hadioui, M.; Chaput, A.; Bastien-Thibault, M.; Wilkinson, K.J.; et al. Chemical and microphysical properties of wind-blown dust near an actively retreating glacier in Yukon, Canada. Aerosol Sci. Technol. 2020, 54, 2–20. [Google Scholar] [CrossRef]
- Óskarsson, B.V.; Riishuus, M.S.; Arnalds, O. Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma 2012, 189–190, 635–651. [Google Scholar] [CrossRef]
- Arnalds, O.; Olafsson, H.; Dagsson-Waldhauserova, P. Quantification of iron-rich volcanogenic dust emissions and deposition over ocean from Icelandic dust sources. Biogeosciences 2014, 11, 6623–6632. [Google Scholar] [CrossRef]
- Baldo, C.; Formenti, P.; Nowak, S.; Chevaillier, S.; Cazaunau, M.; Pangui, E.; Di Biagio, C.; Doussin, J.-F.; Ignatyev, K.; Dagsson-Waldhauserova, P.; et al. Distinct chemical and mineralogical composition of Icelandic dust compared to northern African and Asian dust. Atmos. Chem. Phys. 2020, 20, 13521–13539. [Google Scholar] [CrossRef]
- Scanza, R.A.; Hamilton, D.S.; Perez Garcia-Pando, C.; Buck, C.; Baker, A.; Mahowald, N.M. Atmospheric processing of iron in mineral and combustion aerosols: Development of an intermediate-complexity mechanism suitable for Earth system models. Atmos. Chem. Phys. 2018, 18, 14175–14196. [Google Scholar] [CrossRef]
- Achterberg, E.P.; Steigenberger, S.; Marsay, C.M.; LeMoigne, F.A.C.; Painter, S.C.; Baker, A.R.; Connelly, D.P.; Moore, C.M.; Tagliabue, A.; Tanhua, T. Iron Biogeochemistry in the High Latitude North Atlantic Ocean. Nat. Sci. Rep. 2018, 8, 1283. [Google Scholar] [CrossRef] [PubMed]
- Ovadnevaite, J.; Ceburnis, D.; Plauskaite-Sukiene, K.; Modini, R.; Dupuy, R.; Rimselyte, I.; Ramonet, R.; Kvietkus, K.; Ristovski, Z.; Berresheim, H.; et al. Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean. Atmos. Environ. 2009, 43, 4968–4974. [Google Scholar] [CrossRef]
- Madonna, F.; Amodeo, A.; D’Amico, G.; Mona, L.; Pappalardo, G. Observation of non-spherical ultragiant aerosol using a microwave radar. Geophys. Res. Lett. 2010, 37, L21814. [Google Scholar] [CrossRef]
- Madonna, F.; Amodeo, A.; D’Amico, G.; Pappalardo, G. A study on the use of radar and lidar for characterizing ultragiant aerosol. J. Geophys. Res. 2013. [Google Scholar] [CrossRef]
- Rossini, P.; Molinaroli, E.; De Falco, G.; Fiesoletti, F.; Papa, S.; Pari, E.; Renzulli, A.; Tentoni, P.; Testoni, A.; Valentini, L.; et al. April–May 2010 Eyjafjallajokull volcanic fallout over Rimini, Italy. Atmos. Environ. 2012, 48, 122–128. [Google Scholar] [CrossRef]
- Moroni, B.; Olafur, A.; Dagsson-Waldhauserová, P.; Crocchianti, S.; Riccardo, V.; Cappelletti, D. Mineralogical and Chemical Records of Icelandic Dust Sources Upon Ny-Ålesund (Svalbard Islands). Front. Earth Sci. 2018, 6, 187. [Google Scholar] [CrossRef]
- Đorđević, D.; Tošić, I.; Sakan, S.; Petrović, S.; Đuričić-Milanković, J.; Finger, D.C.; Dagsson-Waldhauserová, P. Can Volcanic Dust Suspended From Surface Soil and Deserts of Iceland Be Transferred to Central Balkan Similarly to African Dust (Sahara)? Front. Earth Sci. 2019, 7, 142. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H. Long-term variability of dust events in Iceland (1949–2011). Atmos. Chem. Phys. 2014, 14, 13411–13422. [Google Scholar] [CrossRef]
- Nakashima, M.; Dagsson-Waldhauserová, P. A 60 Year Examination of Dust Day Activity and Its Contributing Factors From Ten Icelandic Weather Stations From 1950 to 2009. Front. Earth Sci. 2019, 6, 245–252. [Google Scholar] [CrossRef]
- Butwin, M.K.; von Löwis, S.; Pfeffer, M.; Thorsteinsson, T. The Effects of Volcanic Eruptions on the Frequency of Particulate Matter Suspension Events in Iceland. J. Aerosol Sci. 2019, 128, 99–113. [Google Scholar] [CrossRef]
- Conte, M.; Merico, E.; Cesari, D.; Dinoi, A.; Grasso, F.M.; Donateo, A.; Guascito, M.R.; Contini, D. Long-term characterization of African dust advection in south-eastern Italy: Influence on fine and coarse particle concentrations, size distributions, and carbon content. Atmos. Res. 2020, 233, 104690. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H. Long-term frequency and characteristics of dust storm events in Northeast Iceland (1949–2011). Atmos. Environ. 2013, 77, 117–127. [Google Scholar] [CrossRef]
- Baddock, M.; Mockford, T.; Bullard, J.E.; Thorsteinsson, T. Pathways of high-latitude dust in the North Atlantic. Earth Planet. Sci. Lett. 2017, 459, 170–182. [Google Scholar] [CrossRef]
- Crocchianti, S.; Moroni, B.; Dagsson-Waldhauserová, P.; Becagli, S.; Severi, M.; Traversi, R.; Cappelletti, D. Potential Source Contribution Function Analysis of High Latitude Dust Sources over the Arctic: Preliminary Results and Prospects. Atmosphere 2021, 12, 347. [Google Scholar] [CrossRef]
- Bullard, J.E. Contemporary glacigenic inputs to the dust cycle. Earth Surf. Process. Landf. 2013, 38, 71–89. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.; Hladil, J.; Skala, R.; Navratil, T.; Chadimova, L.; Meinander, O. Snow-dust storm A case study from Iceland, March 7th 2013. Aeolian Res. 2015, 16, 69–74. [Google Scholar] [CrossRef]
- Marzen, M.; Iserloh, T.; Casper, M.C.; Ries, J.B. Quantification of particle detachment by rain splash and wind-driven rain splash. Catena 2015, 127, 135–141. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Magnusdottir, A.Ö.; Olafsson, H.; Arnalds, O. The spatial variation of dust particulate matter concentrations during two Icelandic dust storms in 2015. Atmosphere 2016, 7, 77. [Google Scholar] [CrossRef]
- Barkarson, B.; Jónsdóttir, S.; Gísladóttir, F.; Bjarnason, S.; Björnsson, M. Sandfok á Hringveginn–Vegagerðin. 2009. Available online: https://www.vegagerdin.is/vefur2.nsf/Files/Sandfok_a_hringveginn/$file/Sandfok%20%C3%A1%20hringveginn.pdf (accessed on 25 May 2022). [Sandstorms on the ring road-Icelandic Road Administration].
- Jensen, E.; Jónsdóttir, I.; Sveinbjörnsson, E.; Sigþórsson, H.; DagssonWaldhauserová, P. Sandfok og Umferðaröryggi, Skýrsla Vegagerðarinnar. 2019, p. 38. Available online: https://www.vegagerdin.is/vefur2.nsf/Files/sandfok_umferdaroryggi/$file/Sandfok_og_umferdaroryggi_1800_688.pdf (accessed on 25 May 2022).
- Carlsen, H.K.; Hauksdottir, A.; Valdimarsdottir, U.A.; Gislason, T.; Einarsdottir, G.; Runolfsson, H.; Briem, H.; Finnbjornsdottir, R.G.; Gudmundsson, S.; Kolbeinsson, T.B.; et al. Health effects following the Eyjafjallajökull volcanic eruption: A cohort study. BMJ Open 2012, 2, e001851. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, H.K.; Gislason, T.; Forsberg, B.; Meister, K.; Thorsteinsson, T.; Jóhannsson, T.; Finnbjornsdottir, R.; Oudin, A. Emergency hospital visits in association with volcanic ash, dust storms and other sources of ambient particles: A time-series study in Reykjavík, Iceland. Int. J. Environ. Res. Public Health 2015, 12, 4047–4059. [Google Scholar] [CrossRef] [PubMed]
- Meinander, O.; Kontu, A.; Virkkula, A.; Arola, A.; Backman, L.; Dagsson-Waldhauserová, P.; Järvinen, O.; Manninen, T.; Svensson, J.; de Leeuw, G.; et al. Brief communication: Light-absorbing impurities can reduce the density of melting snow. Cryosphere 2014, 8, 991–995. [Google Scholar] [CrossRef]
- Meinander, O.; Dagsson-Waldhauserova, P.; Arnalds, O. Icelandic volcanic dust can have a significant influence on the cryosphere in Greenland and elsewhere. Polar Res. 2016, 35, 31313. [Google Scholar] [CrossRef]
- Peltoniemi, J.I.; Gritsevich, M.; Hakala, T.; Dagsson-Waldhauserová, P.; Arnalds, Ó.; Anttila, K.; Hannula, H.-R.; Kivekäs, N.; Lihavainen, H.; Meinander, O.; et al. Soot on Snow experiment: Bidirectional reflectance factor measurements of contaminated snow. Cryosphere 2015, 9, 2323–2337. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Meinander, O. Editorial: Atmosphere—Cryosphere Interaction in the Arctic, at High Latitudes and Mountains with Focus on Transport, Deposition, and Effects of Dust, Black Carbon, and Other Aerosols. Front. Earth Sci. 2019, 7, 337. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Ozsoy, E. Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res. 2006, 111, D16206. [Google Scholar] [CrossRef]
- Kylling, A.; Groot Zwaaftink, C.D.; Stohl, A. Mineral dust instantaneous radiative forcing in the Arctic. Geophys. Res. Lett. 2018, 45, 4290–4298. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Huang, X.; Wang, W.; Sheng, L.; Zhou, Y. Meteorological feedback and eco-environmental impact of Asian dust: A simulation study. Atmos. Environ. 2021, 253, 118350. [Google Scholar] [CrossRef]
- Sanchez-Marroquin, A.; Arnalds, O.; Baustian-Dorsi, K.; Browse, J.; Dagsson-Waldhauserova, P.; Harrison, A.D.; Maters, E.C.; Pringle, K.J.; Vergara-Temprado, J.; Burke, I.T.; et al. Iceland is an episodic source of atmospheric ice-nucleating particles relevant for mixed-phase clouds. Sci. Adv. 2020, 6, eaba8137. [Google Scholar] [CrossRef] [PubMed]
- Nickovic, S.; Kallos, G.; Papadopoulos, A.; Kakaliagou, O. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res. 2001, 106, 18113–18130. [Google Scholar] [CrossRef]
- Pejanovic, G.; Nickovic, S.; Vujadinovic, M.; Vukovic, A.; Djurdjevic, V.; Dacic, M. Atmospheric deposition of minerals in dust over the open ocean and possible consequences on climate. In Proceedings of the WCRP OSC Climate Research in Service to Society, Denver, CO, USA, 24–28 October 2011. [Google Scholar]
- Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M.R.; Djurdjevic, V.; Dacic, M.; Prasad, A.K.; El-Askary, H.M.; Paris, B.C.; et al. Numerical simulation of “an American haboob”. Atmos. Chem. Phys. 2014, 14, 3211–3230. [Google Scholar] [CrossRef]
- Vukovic, A. High-Resolution Global Dust Map. Indust Webinar, EU COST Action CA16202. Available online: https://cost-indust.eu/media-room/webinars (accessed on 21 April 2021).
- Arnalds, O. Dust sources and deposition of aeolian materials in Iceland. Icel. Agric. Sci. 2010, 23, 3–21. [Google Scholar]
- Richards-Thomas, T.; McKenna-Neuman, C.; Power, I.M. Particle-scale characterization of volcaniclastic dust sources within Iceland. Sedimentology 2020, 68, 1137–1158. [Google Scholar] [CrossRef]
- Arnalds, O.; Þórarinsdóttir, E.; Metúsalemsson, S.; Jónsson, A.; Grétarsson, E.; Arnór, A. Soil Erosion in Iceland. Available online: https://land.is/wp-content/uploads/2018/01/Soil-erosion-in-Iceland.pdf (accessed on 25 May 2022).
- Shao, Y.P. Physics and Modelling of Wind Erosion, 2nd ed. Available online: https://www.springer.com/gp/book/9781402088940 (accessed on 25 May 2022).
- Tegen, I.; Fung, I. Modeling of mineral dust transport in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. 1994, 99, 22897–22914. [Google Scholar] [CrossRef]
- Arnalds, O.; Kimble, J. Andisols of Deserts in Iceland. Soil Sci. Soc. Am. J. 2001, 65, 1778–1786. [Google Scholar] [CrossRef]
- Arnalds, O.; Dagsson-Waldhauserová, P.; Brink, S.H. Icelandic sandy deserts and aeolian processes–II. Áfok Og Ryk. Náttúrufræðingurinn 2019, 89, 132–145, In Icelandic, English Summary. Available online: https://www.moldin.net/uploads/3/9/3/3/39332633/nfr_2019_89_3-4_sandau%C3%B0nir.pdf (accessed on 25 May 2022).
- D’Almeida, D.A. On the variability of desert aerosol radiative characteristics. J. Geophys. Res. 1987, 92, 3017–3026. [Google Scholar] [CrossRef]
- Gomes, L.; Bergametti, G.; Coude’-Gaussen, G.; Rognon, P. Submicron desert dusts: A sandblasting process. J. Geophys. Res. 1990, 95, 13927–13935. [Google Scholar] [CrossRef]
- Kok, J.F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA 2011, 108, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Fecan, F.; Marticorena, B.; Bergametti, G. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 1999, 17, 149–157. [Google Scholar] [CrossRef]
- White, B.R. Soil transport by winds on Mars. J. Geophys. Res. 1979, 84, 4643–4651. [Google Scholar] [CrossRef]
- Pejanovic, G.; Vukovic, A.; Vujadinovic, M.; Dacic, M. Assimilation of satellite information on mineral dust using dynamic relaxation approach. Geophys. Res. Abstr. 2010, 12, EGU2010-7353. [Google Scholar]
- Nickovic, S.; Cvetkovic, B.; Madonna, F.; Rosoldi, M.; Pejanovic, G.; Petkovic, S.; Nikolic, J. Cloud ice caused by atmospheric mineral dust—Part 1: Parameterization of ice nuclei concentration in the NMME-DREAM model. Atmos. Chem. Phys. 2016, 16, 11367–11378. [Google Scholar] [CrossRef]
- Janjic, Z.I.; Gerrity, J.P., Jr.; Nickovic, S. An Alternative Approach to Nonhydrostatic Modelling. Mon. Weather Rev. 2001, 129, 1164–1178. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Janjic, Z.I. The Step-Mountain Coordinate: Physical Package. Mon. Weather Rev. 1990, 118, 1429–1443. [Google Scholar] [CrossRef]
- Giorgi, F. A particle dry-deposition parameterization scheme for use in tracer transport models. J. Geophys. Res. 1986, 91, 9794–9806. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Renard, J.-B.; Olafsson, H.; Vignelles, D.; Berthet, G.; Verdier, N.; Duverger, V. Vertical distribution of aerosols in dust storms during the Arctic winter. Nat. Sci. Rep. 2019, 9, 16122. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kar, J.; Zeng, S.; Tackett, J.; Vaughan, M.; Avery, M.; Pelon, J.; Getzewich, B.; Lee, K.-P.; Magill, B.; et al. Discriminating between clouds and aerosols in the CALIOP version 4.1 data products. Atmos. Meas. Tech. 2019, 12, 703–734. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.H.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Tech. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.; Winker, D.; Hostetler, C.; Poole, L.; Hlavka, D.; Hart, W.; McGill, M. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res. 2004, 109, D15202. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.; Winker, D.; Kittaka, C.; Getzewich, B.; Kuehn, R.; Omar, A.; Powell, K.; Trepte, C.; Hostetler, C. The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance. J. Atmos. Ocean. Technol. 2009, 26, 1198–1213. [Google Scholar] [CrossRef]
- Di Pierro, M.; Jaeglé, L.; Eloranta, E.W.; Sharma, S. Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012). Atmos. Chem. Phys. 2013, 13, 7075–7095. [Google Scholar] [CrossRef]
- Jin, Y.; Kai, K.; Okamato, H.; Hagihara, Y. Improvement of CALIOP cloud masking algorithms for better estimation of dust extinction profiles. J. Meteorol. Soc. 2014, 92, 433–455. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Hayasaka, T.; Wang, S.; Zhou, T.; Jin, H. Short-cut transport path for Asian dust directly to the Arctic: A case study. Environ. Res. Lett. 2015, 10, 114018. [Google Scholar] [CrossRef]
- Zeng, S.; Vaughan, M.; Liu, Z.; Trepte, C.; Kar, J.; Omar, A.; Winker, D.; Lucker, P.; Hu, Y.; Getzewich, B.; et al. Application of high-dimensional fuzzy k-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination. Atmos. Meas. Tech. 2019, 12, 2261–2285. [Google Scholar] [CrossRef]
- Yang, S.; Preißler, J.; Wiegner, M.; von Löwis, S.; Petersen, G.N.; Parks, M.M.; Finger, D.C. Monitoring Dust Events Using Doppler Lidar and Ceilometer in Iceland. Atmosphere 2020, 11, 1294. [Google Scholar] [CrossRef]
- Madonna, F.; Rosoldi, M.; Lolli, S.; Amato, F.; Vande Hey, J.; Dhillon, R.; Zheng, Y.; Brettle, M.; Pappalardo, G. Intercomparison of aerosol measurements performed with multi-wavelength Raman lidars, automatic lidars and ceilometers in the framework of INTERACT-II campaign. Atmos. Meas. Tech. 2018, 11, 2459–2475. [Google Scholar] [CrossRef]
- O’Connor, E.J.; Illingworth, A.J.; Robin, J. Hogan. A Technique for Autocalibration of Cloud Lidar. J. Atmos. Ocean. Technol. 2004, 21, 777–786. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS. Atmos. Meas. Tech. 2015, 8, 2207–2223. [Google Scholar] [CrossRef]
- Sanchez-Marroquin, A.; Arnalds, O.; Baustian-Dorsi, K.J.; Browse, J.; Dagsson-Waldhauserova, P.; Harrison, A.D.; Maters, E.C.; Pringle, K.J.; Vergara-Temprado, J.; Burke, I.T.; et al. Ice nucleation by glaciogenic dust and cloud climate feedbacks. In Proceedings of the EGU General Assembly, online, 19–30 April 2021; p. EGU21-15939. [Google Scholar] [CrossRef]
- Nickovic, S.; Cvetkovic, B.; Pejanovic, G.; Ilic, L.; Dagsson Waldhauserová, P.; Arnalds, Ó.; Brink, S.H.; Nikolic, J.; Petkovic, S. Predicting atmospheric dust process from Icelandic soil sources. EGU Gen. Assem. Geophys. Res. Abstr. 2018, 20, EGU2018-10338. [Google Scholar]
- Cvetkovic, B.; Nickovic, S.; Vukovic, A.; Petkovic, S.; Pejanovic, G.; Dagsson Waldhauserova, P.; Arnalds, O.; Lenka, L.; Brink, S.; Nikolic, J. Numerical modeling of the Icelandic mineral dust transport and processes- towards the operational forecasting system. EGU Gen. Assem. Geophys. Res. Abstr. 2019, 21, EGU2019-10799. [Google Scholar]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Hubanks, P.; Platnick, S.; King, M.; Ridgway, B. MODIS Atmosphere L3 Pridded Product Algorithm Theoretical Basis Document (ATBD) & Users Guide. Available online: https://modis-images.gsfc.nasa.gov/_docs/L3_ATBD_C6.pdf (accessed on 25 May 2022).
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. THE CALIPSO MISSION A Global 3D View of Aerosols and Clouds. Bull. Amer. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Kar, J.; Vaughan, M.A.; Lee, K.-P.; Tackett, J.L.; Avery, M.A.; Garnier, A.; Getzewich, B.J.; Hunt, W.H.; Josset, D.; Liu, Z.; et al. CALIPSO lidar calibration at 532 nm: Version 4 nighttime algorithm. Atmos. Meas. Tech. 2018, 11, 1459–1479. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linne, H.; Ansmann, A.; Boesenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Gross, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res.-Atmos. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Amiridis, V.; Wandinger, U.; Marinou, E.; Giannakaki, E.; Tsekeri, A.; Basart, S.; Kazadzis, S.; Gkikas, A.; Taylor, M.; Baldasano, J.; et al. Optimizing CALIPSO Saharan dust retrievals. Atmos. Chem. Phys. 2013, 13, 12089–12106. [Google Scholar] [CrossRef]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef]
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO lidar level 3 aerosol profile product: Version 3 algorithm design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [Google Scholar] [CrossRef]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef]
- Wiegner, M.; Madonna, F.; Binietoglou, I.; Forkel, R.; Gasteiger, J.; Geiß, A.; Pappalardo, G.; Schäfer, K.; Thomas, W. What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmos. Meas. Tech. 2014, 7, 1979–1997. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvetkovic, B.; Dagsson-Waldhauserová, P.; Petkovic, S.; Arnalds, Ó.; Madonna, F.; Proestakis, E.; Gkikas, A.; Vukovic Vimic, A.; Pejanovic, G.; Rosoldi, M.; et al. Fully Dynamic High–Resolution Model for Dispersion of Icelandic Airborne Mineral Dust. Atmosphere 2022, 13, 1345. https://doi.org/10.3390/atmos13091345
Cvetkovic B, Dagsson-Waldhauserová P, Petkovic S, Arnalds Ó, Madonna F, Proestakis E, Gkikas A, Vukovic Vimic A, Pejanovic G, Rosoldi M, et al. Fully Dynamic High–Resolution Model for Dispersion of Icelandic Airborne Mineral Dust. Atmosphere. 2022; 13(9):1345. https://doi.org/10.3390/atmos13091345
Chicago/Turabian StyleCvetkovic, Bojan, Pavla Dagsson-Waldhauserová, Slavko Petkovic, Ólafur Arnalds, Fabio Madonna, Emmanouil Proestakis, Antonis Gkikas, Ana Vukovic Vimic, Goran Pejanovic, Marco Rosoldi, and et al. 2022. "Fully Dynamic High–Resolution Model for Dispersion of Icelandic Airborne Mineral Dust" Atmosphere 13, no. 9: 1345. https://doi.org/10.3390/atmos13091345
APA StyleCvetkovic, B., Dagsson-Waldhauserová, P., Petkovic, S., Arnalds, Ó., Madonna, F., Proestakis, E., Gkikas, A., Vukovic Vimic, A., Pejanovic, G., Rosoldi, M., Ceburnis, D., Amiridis, V., Lisá, L., Nickovic, S., & Nikolic, J. (2022). Fully Dynamic High–Resolution Model for Dispersion of Icelandic Airborne Mineral Dust. Atmosphere, 13(9), 1345. https://doi.org/10.3390/atmos13091345