Moisture Origin and Transport for Extreme Precipitation over Indonesia’s New Capital City, Nusantara in August 2021
Abstract
:1. Introduction
2. Data and Methods
2.1. Precipitation Data and Reanalysis Data
2.2. HYSPLIT Model and Backward Trajectories
2.3. Moisture Source Attribution
2.4. Clustering for the Trajectories
2.5. Atmospheric Mechanism Analysis
3. Results
3.1. Overview of the Extreme Precipitation Event
3.2. Moisture Sources and Transport for Summer Extreme Precipitation in Nusantara
3.2.1. Dominant Moisture Origin, Pathways, and Contributions
3.2.2. The Role of Atmospheric Modes in the Variability of Moisture Transport
4. Conclusions and Discussion
- The moisture responsible for the extreme precipitation event in Nusantara on 27–28 August 2021 was transported along three dominant routes: BRN, with a contribution of 53.73%; BSS, with a contribution of 32.03%; and SUL, with a contribution of 9.05%.
- BRN and SUL acted as the main sources of terrestrial moisture, whereas BSS acted as the main oceanic moisture source because most of the trajectories traveled across the ocean where the evaporation occurs.
- The Australian monsoon system significantly contributed to the oceanic moisture transport from BSS. A strong and persistent prevailing wind strengthened the near-surface flow passed through a warm sea-surface temperature in the BSS, which supported the large moisture intake from BSS.
- A large-scale high vortex flow located to the west of BRN contributed to the highest terrestrial moisture transport from BRN, whereas BSISO1 and low-frequency variability associated with La Niña modulated the moisture propagation from the eastern region of Indonesia.
- The results indicate the importance of terrestrial and oceanic moisture sources from BNN and SUL as well as BSS for the formation of extreme precipitation events in Nusantara, Indonesia.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yusriyah, K.; Sudaryanto, S.; Fatoni, A.; Mansyur, M.A. Communication Networks Analysis on Information Dissemination of the Moving of Capital City From Jakarta to East Kalimantan. Aspiration J. 2020, 1, 31–55. [Google Scholar]
- Nugroho, H. Pemindahan Ibu Kota Baru Negara Kesatuan Republik Indonesia ke Kalimantan Timur: Strategi Pemenuhan Kebutuhan dan Konsumsi Energi. Bappenas Work. Pap. 2020, 3, 33–41. [Google Scholar]
- Kumalati, R.; Yuliarti, A.; Ali, S.D.; Murliawan, K.H.; Rahman, A.; Arief, O.E.A.; Muza, M.N.; Rinaldi, S.; Anggraini, R.N. Location Characteristics of the New Country Capital in East Kalimantan Province. J. Antropol. Isu-Isu Sos. Budaya 2022, 24, 18–25. [Google Scholar]
- Abdul, M. Sebanyak 455 Rumah Terendam Banjir Kutai Kartanegara. Available online: https://www.bnpb.go.id/berita/-banjir-sebanyak-455-rumah-terendam-banjir-kutai-kartanegara- (accessed on 29 July 2022).
- BMKG. Analisis Kejadian Banjir di Balikpapan Tanggal 28 Agustus 2021. Available online: https://www.bmkg.go.id/artikel/?p=analisis-kejadian-banjir-di-balikpapan-tanggal-28-agustus-2021&lang=ID (accessed on 30 July 2022).
- Nurdiati, S.; Khatizah, E.; Najib, M.; Hidayah, R. Analysis of rainfall patterns in Kalimantan using fast fourier transform (FFT) and empirical orthogonal function (EOF). J. Phys. Conf. Ser. 2021, 1796, 012053. [Google Scholar]
- Seo, K.H.; Schemm, J.K.E.; Wang, W.; Kumar, A. The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: The effect of sea surface temperature. Mon. Weather Rev. 2007, 135, 1807–1827. [Google Scholar]
- Muhammad, F.R.; Lubis, S.W.; Setiawan, S. Impacts of the Madden–Julian oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 2021, 41, 1970–1984. [Google Scholar]
- Jiang, X.; Li, T.; Wang, B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim. 2004, 17, 1022–1039. [Google Scholar]
- Fukutomi, Y. Tropical Synoptic-Scale Waves Propagating Across the Maritime Continent and Northern Australia. J. Geophys. Res. Atmos. 2019, 124, 7665–7682. [Google Scholar]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar]
- Aldrian, E.; Dwi Susanto, R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1435–1452. [Google Scholar]
- Aldrian, E. Spatial patterns of ENSO impact on Indonesian rainfall. J. Sains Teknol. Modif. Cuaca 2002, 3, 5–15. [Google Scholar]
- Hassim, M.E.E.; Timbal, B. Observed Rainfall Trends over Singapore and the Maritime Continent from the Perspective of Regional-Scale Weather Regimes. J. Appl. Meteorol. Climatol. 2019, 58, 365–384. [Google Scholar] [CrossRef]
- Córdova, M.; Orellana-Alvear, J.; Rollenbeck, R.; Célleri, R. Determination of Climatic Conditions Related to Precipitation Anomalies in the Tropical Andes by Means of the Random Forest Algorithm and Novel Climate Indices. Int. J. Climatol. 2021, 42, 5055–5072. [Google Scholar] [CrossRef]
- Berry, G.; Reeder, M.J. Objective Identification of the Intertropical Convergence Zone: Climatology and Trends from the ERA-Interim. J. Clim. 2014, 27, 1894–1909. [Google Scholar] [CrossRef]
- Freitas, A.C.V.; Aímola, L.; Ambrizzi, T.; de Oliveira, C.P. Extreme Intertropical Convergence Zone shifts over Southern Maritime Continent. Atmos. Sci. Lett. 2017, 18, 2–10. [Google Scholar] [CrossRef]
- Mason, S.J.; Waylen, P.R.; Mimmack, G.M.; Rajaratnam, B.; Harrison, J.M. Changes in extreme rainfall events in South Africa. Clim. Chang. 1999, 41, 249–257. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar]
- Nie, Y.; Sun, J. Moisture Sources and Transport for Extreme Precipitation over Henan in July 2021. Geophys. Res. Lett. 2022, 49, e2021GL097446. [Google Scholar]
- Zhou, Y.s.; Xie, Z.m.; Liu, X. An analysis of moisture sources of torrential rainfall events over Xinjiang, China. J. Hydrometeorol. 2019, 20, 2109–2122. [Google Scholar]
- Tan, Y.; Yang, S.; Zwiers, F.; Wang, Z.; Sun, Q. Moisture budget analysis of extreme precipitation associated with different types of atmospheric rivers over western North America. Clim. Dyn. 2022, 58, 793–809. [Google Scholar]
- Gimeno, L.; Dominguez, F.; Nieto, R.; Trigo, R.; Drumond, A.; Reason, C.J.; Taschetto, A.S.; Ramos, A.M.; RameshKumar, M.; Marengo, J. Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour. 2016, 41, 117–141. [Google Scholar]
- Gustafsson, M.; Rayner, D.; Chen, D. Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus A: Dyn. Meteorol. Oceanogr. 2010, 62, 605–616. [Google Scholar]
- Hermawan, E.; Lubis, S.W.; Harjana, T.; Purwaningsih, A.; Ridho, A.; Andarini, D.F.; Ratri, D.N.; Widyaningsih, R. Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia. Atmosphere 2022, 13, 1092. [Google Scholar]
- Lubis, S.W.; Hagos, S.; Hermawan, E.; Respati, M.R.; Ridho, A.; Muhammad, F.R.; Paski, J.A.I.; Ratri, D.N.; Setiawan, S.; Permana, D.S. Record-Breaking Precipitation in Indonesia’s Capital Jakarta in January 2020 Linked to the Northerly Surge, Equatorial Waves, and MJO. Earth Space Sci. Open Arch. 2022, 16. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar]
- Putri, N.S.; Iwabuchi, H.; Hayasaka, T. Evolution of Mesoscale Convective System Properties as Derived from Himawari-8 High Resolution Data Analyses. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 239–250. [Google Scholar]
- Whitehall, K.; Mattmann, C.A.; Jenkins, G.; Rwebangira, M.; Demoz, B.; Waliser, D.; Kim, J.; Goodale, C.; Hart, A.; Ramirez, P.; et al. Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Sci. Inform. 2015, 8, 663–675. [Google Scholar]
- Nuryanto, D.E.; Pawitan, H.; Hidayat, R.; Aldrian, E. Characteristics of two mesoscale convective systems (MCSs) over the Greater Jakarta: Case of heavy rainfall period 15–18 January 2013. Geosci. Lett. 2019, 6, 1–15. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe. J. Hydrometeorol. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- James, P.; Stohl, A.; Spichtinger, N.; Eckhardt, S.; Forster, C. Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions. Nat. Hazards Earth Syst. Sci. 2004, 4, 733–746. [Google Scholar] [CrossRef]
- Lou, D.; Yang, M.; Shi, D.; Wang, G.; Ullah, W.; Chai, Y.; Chen, Y. K-Means and C4.5 Decision Tree Based Prediction of Long-Term Precipitation Variability in the Poyang Lake Basin, China. Atmosphere 2021, 12, 834. [Google Scholar] [CrossRef]
- Carvalho, M.; Melo-Gonçalves, P.; Teixeira, J.; Rocha, A. Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth Parts A/B/C 2016, 94, 22–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Moges, S.; Block, P. Optimal Cluster Analysis for Objective Regionalization of Seasonal Precipitation in Regions of High Spatial–Temporal Variability: Application to Western Ethiopia. J. Clim. 2016, 29, 3697–3717. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Déqué, M. A Flexible Bandpass Filter Design Procedure Applied to Midlatitude Intraseasonal Variability. Mon. Weather Rev. 1998, 126, 3326–3335. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, Z.M.; Wu, Z. Enhanced Feedback between Shallow Convection and Low-Level Moisture Convergence Leads to Improved Simulation of MJO Eastward Propagation. J. Clim. 2022, 35, 591–615. [Google Scholar] [CrossRef]
- Peters, J.M.; Morrison, H.; Zhang, G.J.; Powell, S.W. Improving the Physical Basis for Updraft Dynamics in Deep Convection Parameterizations. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002282. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric Moisture Recycling: Role of Advection and Local Evaporation. J. Clim. 1999, 12, 1368–1381. [Google Scholar] [CrossRef]
- Savenije, H.H. New definitions for moisture recycling and the relationship with land-use changes in the Sahel. J. Hydrol. 1995, 167, 57–78. [Google Scholar] [CrossRef]
- Muhammad, F.R.; Lubis, S. Impacts of the Boreal Summer Intraseasonal Oscillation (BSISO) on Precipitation Extremes in Indonesia. Earth Space Sci. Open Arch. 2022, 35. [Google Scholar] [CrossRef]
- Supari.; Tangang, F.; Salimun, E.; Aldrian, E.; Sopaheluwakan, A.; Juneng, L. ENSO modulation of seasonal rainfall and extremes in Indonesia. Clim. Dyn. 2018, 51, 2559–2580. [Google Scholar] [CrossRef]
- Wheeler, M.C.; McBride, J.L. Australian-Indonesian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer: Berlin/Heidelberg, Germany, 2007; pp. 125–173. [Google Scholar]
- Kurniadi, A. Pemilihan Ibukota Negara Republik Indonesia Baru Berdasarkan Tingkat Kebencanaan. J. Manaj. Bencana (JMB) 2019, 5, 3825–3839. [Google Scholar] [CrossRef]
- As-syakur, A.R.; Adnyana, I.W.S.; Mahendra, M.S.; Arthana, I.W.; Merit, I.N.; Kasa, I.W.; Ekayanti, N.W.; Nuarsa, I.W.; Sunarta, I.N. Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol. 2014, 34, 3825–3839. [Google Scholar] [CrossRef]
- Peatman, S.C.; Schwendike, J.; Birch, C.E.; Marsham, J.H.; Matthews, A.J.; Yang, G.Y. A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves. J. Clim. 2021, 34, 8933–8953. [Google Scholar] [CrossRef]
- Qian, J.H.; Robertson, A.W.; Moron, V. Diurnal cycle in different weather regimes and rainfall variability over Borneo associated with ENSO. J. Clim. 2013, 26, 1772–1790. [Google Scholar] [CrossRef]
- Lubis, S.W.; Jacobi, C. The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol. 2015, 35, 1465–1483. [Google Scholar] [CrossRef]
- Lubis, S.W.; Respati, M.R. Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Int. J. Climatol. 2021, 41, 2418–2440. [Google Scholar] [CrossRef]
- Qian, J.H. Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci. 2008, 65, 1428–1441. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purwaningsih, A.; Lubis, S.W.; Hermawan, E.; Andarini, D.F.; Harjana, T.; Ratri, D.N.; Ridho, A.; Risyanto; Sujalu, A.P. Moisture Origin and Transport for Extreme Precipitation over Indonesia’s New Capital City, Nusantara in August 2021. Atmosphere 2022, 13, 1391. https://doi.org/10.3390/atmos13091391
Purwaningsih A, Lubis SW, Hermawan E, Andarini DF, Harjana T, Ratri DN, Ridho A, Risyanto, Sujalu AP. Moisture Origin and Transport for Extreme Precipitation over Indonesia’s New Capital City, Nusantara in August 2021. Atmosphere. 2022; 13(9):1391. https://doi.org/10.3390/atmos13091391
Chicago/Turabian StylePurwaningsih, Anis, Sandro W. Lubis, Eddy Hermawan, Dita Fatria Andarini, Teguh Harjana, Dian Nur Ratri, Ainur Ridho, Risyanto, and Akas Pinaringan Sujalu. 2022. "Moisture Origin and Transport for Extreme Precipitation over Indonesia’s New Capital City, Nusantara in August 2021" Atmosphere 13, no. 9: 1391. https://doi.org/10.3390/atmos13091391
APA StylePurwaningsih, A., Lubis, S. W., Hermawan, E., Andarini, D. F., Harjana, T., Ratri, D. N., Ridho, A., Risyanto, & Sujalu, A. P. (2022). Moisture Origin and Transport for Extreme Precipitation over Indonesia’s New Capital City, Nusantara in August 2021. Atmosphere, 13(9), 1391. https://doi.org/10.3390/atmos13091391