US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clean Air Policy Scenarios Analyzed
2.2. Emissions
2.3. Chemical Transport Model
3. Results
3.1. Ozone
3.2. PM2.5
3.3. Clean Energy Standard (CES) CES40B—An 80x30 policy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holland, D.M.; Principe, P.P.; Sickles, J.E. Trends in atmospheric sulfur and nitrogen species in the eastern United States for 1989–1995. Atmos. Environ. 1999, 33, 37–49. [Google Scholar] [CrossRef]
- Howarth, R.W.; Boyer, E.W.; Pabich, W.J.; Galloway, J.N. Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 2002, 31, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.H.; Mullen, M.A.; Bollman, A.D.; Thesing, K.B.; Salhotra, M.; Divita, F.; Neumann, J.E.; Price, J.C.; DeMocker, J. Emission projections for the US environmental protection agency section 812 second prospective Clean Air Act Cost/benefit analysis. J. Air Waste Manage. Assoc. 2008, 58, 657–672. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liang, X.Z.; Sun, C.; Tao, Z.N.; Tong, D.Q. The long-term trend and production sensitivity change in the US ozone pollution from observations and model simulations. Atmos. Chem. Phys. 2020, 20, 3191–3208. [Google Scholar] [CrossRef]
- Craig, K.; Erdakos, G.; Chang, S.Y.; Baringer, L. Air quality and source apportionment modeling of year 2017 ozone episodes in Albuquerque/Bernalillo County, New Mexico. J. Air Waste Manage. Assoc. 2020, 70, 1101–1120. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Ninneman, M.; Chan, H.C. NOx and O3 Trends at US Non-Attainment Areas for 1995–2020: Influence of COVID-19 Reductions and Wildland Fires on Policy-Relevant Concentrations. J. Geophys. Res.-Atmos. 2022, 127, 14. [Google Scholar] [CrossRef]
- Casey, J.A.; Su, J.S.G.; Henneman, L.R.F.; Zigler, C.; Neophytou, A.M.; Catalano, R.; Gondalia, R.; Chen, Y.T.; Kaye, L.; Moyer, S.S.; et al. Improved asthma outcomes observed in the vicinity of coal power plant retirement, retrofit and conversion to natural gas. Nat. Energy 2020, 5, 398–408. [Google Scholar] [CrossRef]
- Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association of Improved Air Quality with Lung Development in Children. N. Engl. J. Med. 2015, 372, 905–913. [Google Scholar] [CrossRef]
- Chestnut, L.G.; Mills, D.M. A fresh look at the benefits and costs of the US Acid Rain Program. J. Environ. Manage. 2005, 77, 252–266. [Google Scholar] [CrossRef]
- Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Pusede, S.E.; Cohen, R.C. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995-present. Atmos. Chem. Phys. 2012, 12, 8323–8339. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Berkowitz, C.M.; Kleinman, L.I.; Springston, S.R.; Doskey, P.V.; Lonneman, W.A.; Spicer, C.W. Ozone production efficiency and NOx depletion in an urban plume: Interpretation of field observations and implications for evaluating O3-NOx-VOC sensitivity. J. Geophys. Res.-Atmos. 2003, 108, 23. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Rennert, K.; Roy, N.; Burtraw, D. Modeled Effects of Inflation Reduction Act of 2022; Resources for the Future: Washington, DC, USA, 2022. [Google Scholar]
- Saelen, H.; Hovi, J.; Sprinz, D.; Underdal, A. How US withdrawal might influence cooperation under the Paris climate agreement. Environ. Sci. Policy 2020, 108, 121–132. [Google Scholar] [CrossRef]
- Pickering, J.; McGee, J.S.; Stephens, T.; Karlsson-Vinkhuyzen, S.I. The impact of the US retreat from the Paris Agreement: Kyoto revisited? Clim. Policy 2018, 18, 818–827. [Google Scholar] [CrossRef]
- Nong, D.; Siriwardana, M. Effects on the US economy of its proposed withdrawal from the Paris Agreement: A quantitative assessment. Energy 2018, 159, 621–629. [Google Scholar] [CrossRef]
- Liu, J.Y.; Woodward, R.T.; Zhang, Y.J. Has Carbon Emissions Trading Reduced PM2.5 in China? Environ. Sci. Technol. 2021, 55, 6631–6643. [Google Scholar] [CrossRef]
- Yang, H.; Pham, A.T.; Landry, J.R.; Blumsack, S.A.; Peng, W. Emissions and Health Implications of Pennsylvania’s Entry into the Regional Greenhouse Gas Initiative. Environ. Sci. Technol. 2021, 55, 12153–12161. [Google Scholar] [CrossRef]
- Vandepaer, L.; Panos, E.; Bauer, C.; Amor, B. Energy System Pathways with Low Environmental Impacts and Limited Costs: Minimizing Climate Change Impacts Produces Environmental Cobenefits and Challenges in Toxicity and Metal Depletion Categories. Environ. Sci. Technol. 2020, 54, 5081–5092. [Google Scholar] [CrossRef]
- David, L.M.; Ravishankara, A.R.; Brey, S.J.; Fischer, E.V.; Volckens, J.; Kreidenweis, S. Could the exception become the rule? ‘Uncontrollable’ air pollution events in the US due to wildland fires. Environ. Res. Lett. 2021, 16, 8. [Google Scholar] [CrossRef]
- Zhang, H.; Srinivasan, R. A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. Sustainability 2020, 12, 9045. [Google Scholar] [CrossRef]
- DeWitt, H.L.; Crow, W.L.; Flowers, B. Performance evaluation of ozone and particulate matter sensors. J. Air Waste Manage. Assoc. 2020, 70, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Collet, S.; Kidokoro, T.; Karamchandani, P.; Jung, J.; Shah, T. Future year ozone source attribution modeling study using CMAQ-ISAM. J. Air Waste Manage. Assoc. 2018, 68, 1239–1247. [Google Scholar] [CrossRef]
- Clean Air Scientific Advisory Committee (CASAC). Available online: https://casac.epa.gov/ords/sab/f?p=113:1: (accessed on 10 August 2022).
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.H.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Dennis, R.L.; Byun, D.W.; Novak, J.H.; Galluppi, K.J.; Coats, C.J.; Vouk, M.A. The next generation of integrated air quality modeling: EPA’s Models-3. Atmos. Environ. 1996, 30, 1925–1938. [Google Scholar] [CrossRef]
- Driscoll, C.; Lambert, K.F.; Wilcoxen, P.; Russell, A.; Burtraw, D.; Domeshek, M.; Mehdi, Q.; Shen, H.; Vasilakos, P. An 80x30 Clean Electricity Standard: Carbon, Costs, and Health Benefits. Available online: https://cleanenergyfutures.syr.edu/wp-content/uploads/2021/07/CEF-80x30-CES-Report_Final_July_9_21.pdf (accessed on 16 July 2022).
- Esposito, D. Studies Agree 80 Percent Clean Electricity By 2030 Would Save Lives and Create Jobs at Minimal Cost; Energy Innovation: San Franscisco, CA, USA, 2021. [Google Scholar]
Policy Type | Policy Cases | Case name |
---|---|---|
Reference case | “Business as usual”—No Policy enacted | Base case/BAU |
Cap and trade | Net 0 emissions in 2040, offsets allowed but no banking | CAP |
Net 0 emissions in 2040; banking allowed | CAP-B | |
Clean Energy Standard | 100% clean in 2050, low carbon intensity benchmark (0.46 metric tons/MWh), total generation, banking allowed until 2040 | CES50-L |
100% clean in 2050, high carbon intensity benchmark (0.82 metric tons/MWh), total generation, banking allowed until 2040 | CES50-H | |
100% clean in 2040, 0.82 metric tons/MWh, partial crediting, total generation, no banking | CES40 | |
83% clean by 2030, 100% clean by 2040, 0.82 metric tons/MWh, partial crediting, total generation, banking allowed | CES40B | |
Carbon Price | Carbon price $25/ton rising at 5% per year | CP-25 |
Carbon price $50/ton rising at 5% per year | CP-50 | |
Section 111 rules | Affordable Clean Energy (ACE)—assumed 4.5% HRI for affected units | ACE |
Updated Clean Power Plan—achieves 65% CO2 reduction from 2005 levels by 2035 | CPP-20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilakos, P.N.; Shen, H.; Mehdi, Q.; Wilcoxen, P.; Driscoll, C.; Fallon, K.; Burtraw, D.; Domeshek, M.; Russell, A.G. US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies. Atmosphere 2022, 13, 1401. https://doi.org/10.3390/atmos13091401
Vasilakos PN, Shen H, Mehdi Q, Wilcoxen P, Driscoll C, Fallon K, Burtraw D, Domeshek M, Russell AG. US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies. Atmosphere. 2022; 13(9):1401. https://doi.org/10.3390/atmos13091401
Chicago/Turabian StyleVasilakos, Petros N., Huizhong Shen, Qasim Mehdi, Peter Wilcoxen, Charles Driscoll, Kathy Fallon, Dallas Burtraw, Maya Domeshek, and Armistead G. Russell. 2022. "US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies" Atmosphere 13, no. 9: 1401. https://doi.org/10.3390/atmos13091401
APA StyleVasilakos, P. N., Shen, H., Mehdi, Q., Wilcoxen, P., Driscoll, C., Fallon, K., Burtraw, D., Domeshek, M., & Russell, A. G. (2022). US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies. Atmosphere, 13(9), 1401. https://doi.org/10.3390/atmos13091401