Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations
Abstract
:1. Background of the Study
2. Data and Analysis Method
2.1. Data
2.2. Analysis Methods
2.2.1. Estimation of Characteristics of Vertically Propagating Gravity Wave
2.2.2. Horizontal Wavelength Estimation of Gravity Waves
3. Results
TIMED Passes | Coordinates of Profile 1 (Lat. ° N, Long. ° E) | Coordinates of Profile 2 (Lat. ° N, Long. ° E) | Distance between Profiles (km) |
---|---|---|---|
For Figure 4 | |||
1 | (13.65, 140.30) | (11.30, 140.60) | 263 |
2 | (4.50, 117.40) | (2.20, 117.90) | 262 |
3 | (6.70, 92.40) | (4.38, 92.90) | 266 |
4 | (2.90, 68.80) | (0.40, 69.40) | 287 |
5 | (1.01, 44.70) | (−1.27, 45.28) | 262 |
6 | (−2.90, 332.20) | (−5.10, 332.90) | 257 |
For Figure 5 | |||
1 | (8.80, 158.60) | (6.50, 159.00) | 260 |
2 | (10.70, 133.80) | (8.30, 134.20) | 271 |
3 | (1.50, 111.10) | (−0.90, 111.70) | 93 |
4 | (5.30, 61.40) | (2.90, 61.90) | 273 |
5 | (2.40, 348.60) | (0.10, 349.10) | 262 |
6 | (−4.30, 276.90) | (−6.60, 277.50) | 264 |
For Figure 6 | |||
1 | (8.40, 196.90) | (10.80, 196.60) | 269 |
2 | (5.80, 172.90) | (8.10, 172.50) | 288 |
3 | (1.50, 149.40) | (4.00, 149.90) | 284 |
4 | (5.50, 124.10) | (8.00, 123.6) | 283 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booker, H.G.; Wells, H.W. Scattering of radio waves by the F-region of the ionosphere. Terr. Magn. Atmos. Electr. 1938, 43, 3. [Google Scholar] [CrossRef]
- Fejer, B.G.; de Paula, E.R.; Gonzáilez, S.A.; Woodman, R.F. Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res. 1991, 96, 13901–13906. [Google Scholar] [CrossRef]
- Zalesak, S.T.; Ossakow, S.L.; Chaturvedi, P.K. Nonlinear Equatorial Spread F: The Effect of Neutral Winds and Background Pedersen Conductivity. J. Geophys. Res. 1982, 87, 151–166. [Google Scholar] [CrossRef]
- Dungey, J.W. Convective diffusion in the equatorial F-region. J. Atmos. Sol. Terr. Phys. 1956, 9, 304–310. [Google Scholar] [CrossRef]
- Kelley, M.C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B.B.; Carter, D.A.; Ecklund, W.L.; Carlson, C.W.; Hausler, B.; Torbert, R. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophys. Res. Lett. 1976, 3, 8. [Google Scholar] [CrossRef]
- Woodman, R.F.; la Hoz, C. Radar Observations of F region Equatorial Irregularities. J. Geophys. Res. 1976, 81, 31. [Google Scholar]
- Sultan, P.J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. 1996, 101, 875–891. [Google Scholar]
- Abdu, M.A.; de Mederos, R.T.; Bitterncourt, J.A.; Batista, I.S. Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere. J. Geophys. Res. 1983, 88, 399–402. [Google Scholar] [CrossRef]
- Farley, D.T.; Alsley, B.B.; Woodman, R.F.; Lure, J.P.M. Equatorial Spread F’ Implications of VHF Radar Observations. J. Geophys. Res. 1970, 75, 34. [Google Scholar]
- Kelley, M.C. Equatorial spread F: Recent results and outstanding problems. J. Atmos. Terr. Phys. 1985, 47, 745–752. [Google Scholar] [CrossRef]
- Zalesak, S.T.; Ossakow, S.L. Nonlinear Equatorial Spread F: Spatially Large Bubbles Resulting from Large Horizontal Scale Initial Perturbations. J. Geophys. Res. 1980, 85, 2131–2142. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L.; de Paula, E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. 1999, 104, 859–869. [Google Scholar]
- Jayachandran, B.; Balan, N.; Rao, P.B.; Sastri, J.H.; Bailey, G.J. HF Doppler and Ionosonde Observations on the Onset Conditions of Equatorial Spread F. J. Geophys. Res. 1993, 98, 741–750. [Google Scholar]
- Smith, J.M.; Rodrigues, F.S.; de Paula, E.R. Radar and satellite investigations of equatorial evening vertical drifts and spread F. Ann. Geophys. 2015, 33, 1403–1412. [Google Scholar] [CrossRef]
- Stolle, C.; Lühr, H.; Fejer, B.G. Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Ann. Geophysicae. 2008, 26, 3979–3988. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, A.J.; Ossakow, S.L. Nonlinear equatorial spread F. Geophys. Res. Lett. 1976, 3, 8. [Google Scholar] [CrossRef]
- Maruyama, T.; Saito, S.; Kawamura, M.; Nozaki1, K.; Krall, J.; Huba, J.D. Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: Evidence for meridional wind control. Ann. Geophys. 2009, 27, 2027–2034. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumoardner, J.; Pi, X.; Sultan, P.J.; Tsunoda, R. Onset Conditions for Equatorial Spread F. J. Geophys. Res. 1992, 97, 865–876. [Google Scholar]
- Susumu, S.; Takashi, M. Effects of Trans-equatorial Thermospheric Wind on Plasma Bubble Occurrences. J. Natl. Inst. Inf. Commun. Technol. 2009, 56, 1–4. [Google Scholar]
- Huba, J.D.; Krall, J. Impact of meridional winds on equatorial spread F: Revisited. Geophys. Res. Lett. 2013, 40, 1268–1272. [Google Scholar] [CrossRef]
- Yizengaw, E.; Moldwin, M.B.; Zesta, E.; Biouele, C.M.; Damtie, B.; Mebrahtu, A.; Rabiu, B.; Stoneback, C.F.V.R. The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Ann. Geophys. 2014, 32, 231–238. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Control of the Seasonal and Longitudinal occurrence of Equatorial Scintillation by the longitudinal gradient Integrated E Region Pedersen Conductivity. J. Geophys. Res. 1985, 90, 447–456. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Day-to-day variability in equatorial spread F: Is there some physics missing? Geophys. Res. Lett. 2006, 33, L16106. [Google Scholar] [CrossRef]
- Kelley, M.C.; Larsen, M.F.; LaHoz, C.; McClure, J.P. Gravity wave initiation of equatorialspread F: A case study. J. Geophys. Res. 1981, 86, 9087–9100. [Google Scholar] [CrossRef]
- Tsunoda, R.T. on equatorial spread F: Establishing a seeding hypothesis. J. Geophys. Res. 2010, 115, A12303. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophysicae. 1996, 14, 917–940. [Google Scholar]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Röttger, J. Wavelike structure of large-scale equatorial spread F irregularities. J. Atmos. Sol-Terr. Phys. 1973, 35, 1195–1206. [Google Scholar] [CrossRef]
- Lin, S.C.; Immel, T.J.; Yeh, H.C.; Mende, S.B.; Burch, J.L. Simultaneous observations of equatorial plasma depletion by IMAGE and ROCSAT-1 satellites. J. Geophys. Res. 2005, 110, A06304. [Google Scholar] [CrossRef]
- Fukao, S.; Yokoyama, T.; Tayama, T.; Yamamoto, M.; Maruyamam, T.; Saito, S. Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesian sector. Ann. Geophys. 2006, 24, 1411–1418. [Google Scholar] [CrossRef]
- Hei, M.A.; Heelis, R.A.; McClure, J.P. Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions. J. Geophys. Res. 2005, 110, A12315. [Google Scholar] [CrossRef]
- Tsunoda, R.T. On the enigma of day-to-day variability in equatorial spread F. Geophys. Res. Lett. 2005, 32, L08103. [Google Scholar] [CrossRef]
- Abdu, M.A.; Kherani, E.A.; Batista, I.S.; de Paula, E.R.; Fritts, D.C.; Sobral, J.H.A. Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann. Geophys. 2009, 27, 2607–2622. [Google Scholar] [CrossRef]
- Huang, C.S.; Kelley, M.C. Nonlinear evolution of equatorial spread F1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding. J. Geophys. Res. 1996, 101, 283–292. [Google Scholar] [CrossRef]
- Huang, C.S.; Kelley, M.C. Nonlinear evolution of equatorial spread F2. Grvity wave seeding of Rayleigh-Taylor instability. J. Geophys. Res. 1996, 101, 293–302. [Google Scholar] [CrossRef]
- De La Beaujardiere, O.; Jeong, L.; Basu, B.; Basu, S.; Beach, T.; Bernhardt, P.; Burke, W.; Groves, K.; Heelis, R.; Holzworth, R.; et al. C/NOFS: A mission to forecast scintillations. J. Atmos. Sol. Terr. Phys. 2004, 66, 1573–1591. [Google Scholar] [CrossRef]
- Russell, J.M.; Mlynczak, M.G., III; Gordley, L.L.; Tansock, J.; Esplin, R. An overview of the SABER experiment and preliminary calibration results. In Proceedings of the SPIE, 44th Annual Meeting, Denver, CO, USA, 18–23 July 1999; Volume 3756, pp. 277–288. [Google Scholar]
- John, S.R.; Kumar, K.K. TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Clim. Dyn. 2012, 39, 1489–1505. [Google Scholar] [CrossRef]
- Mertens, C.J.; Mlynczak, M.G.; Lo’pez-Puertas, M.; Wintersteiner, P.P.; Picard, R.H.; Winick, J.R.; Gordley, L.L.; Russell, J.M., III. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 mm Earth limb emission under non-LTE conditions. Geophy. Res. Lett. 2001, 28, 1391–1394. [Google Scholar] [CrossRef]
- Kishore Kumar, G.; Venkat Ratnam, M.; Patra, A.K.; Vijaya Bhaskara Rao, S.; Russell, J. Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations. J. Geophys. Res. 2008, 113, D23106. [Google Scholar] [CrossRef]
- Ramesh, K.; Sridharan, S. Large mesospheric inversion layer due to breaking of small scale gravity waves: Evidence from Rayleigh lidar observations over Gadanki (13.51° N, 79.21° E). J. Atmos. Sol. Terr. Phys. 2012, 89, 90–97. [Google Scholar] [CrossRef]
- Wang, L.; Geller, M.A.; Alexander, M.J. Spatial and Temporal Variations of Gravity Wave Parameters. Part I: Intrinsic Frequency, Wavelength, and Vertical Propagation Direction. J. Atmos. Sci. 2005, 62, 125–142. [Google Scholar] [CrossRef]
- Hirota, I. Climatology of gravity waves in the middle atmosphere. J. Atmos. Terr. Phys. 1984, 46, 767–773. [Google Scholar] [CrossRef]
- Hirota, I.; Niki, T. A statistical study of inertia-gravity waves in the middle atmosphere. J. Meteorol. Soc. 1985, 63, 1055–1066. [Google Scholar] [CrossRef]
- Hamilton, K. Climatological Statistics of Stratospheric Inertia-Gravity Waves Deduced from Historical Rocketsonde Wind and Temperature Data. J. Geophys. Res. 1991, 96, 20831–20839. [Google Scholar] [CrossRef]
- Eckermann, S.D.; Hirota, I.; Hocking, W.K. Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Q. J. R. Meteorol. Soc. 1994, 121, 149–186. [Google Scholar] [CrossRef]
- Wang, L.; Alexander, M.J. Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res. 2010, 115, D21122. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Alexander, M.J.; Warner, C.D. Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res. 2004, 109, D20103. [Google Scholar] [CrossRef]
- Tsuda, T.; Kato, S.; Yokoi, T.; Inoue, T.; Yamamoto, M.; Van Zandt, T.E.; Fukao, S.; Sato, T. Gravity waves in the mesosphere observed with the middle and upper atmosphere radar. Radio Sci. 1990, 26, 1005–1018. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data. J. Geophys. Res. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Hindley, N.P.; Wright, C.J.; Smith, N.D.; Mitchell, N.J. The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSM GPS RO. Atmos. Chem. Phys. 2015, 15, 7797–7818. [Google Scholar] [CrossRef]
- Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J. On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech. 2013, 6, 3169–3180. [Google Scholar] [CrossRef]
- Bretherton, F.P. Momentum transport by gravity waves. Q. J. R. Met. Soc. 1969, 95, 213–243. [Google Scholar] [CrossRef]
- Fritts, D.C. A review of gravity wave saturation processes effects and variability in the middle atmosphere. Pageoph 1989, 130, 343–371. [Google Scholar] [CrossRef]
- Dunkerton, T.J. Theory of internal gravity wave saturation. Pageoph 1989, 130, 2–3. [Google Scholar] [CrossRef]
- Fritts, D.C.; Tsuda, T.; Kato, S.; Sato, T.; Fukao, S. Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J. Atmos. Sci. 1988, 45, 12. [Google Scholar] [CrossRef]
- De La Torre, A.; Alexander, P.; Giraldez, A. High-resolution temperature profiles measured with stratospheric balloons near the Andes Mountains. Geophys. Res. Lett. 1997, 24, 1079–1082. [Google Scholar] [CrossRef]
- Nastrom, G.D.; Van Zandt, T.E.; Warnock, J.M. Vertical wave- number spectra of wind and temperature from high-resolution balloon soundings over Illinois. J. Geophys. Res. 1997, 102, 6685–6701. [Google Scholar] [CrossRef]
- Dewan, E.M.; Grossbard, N. Power spectral artifacts in published balloon data and implications regarding saturated gravity wave theories. J. Geophys. Res. 2000, 105, 4667–4683. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical Guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 1. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Gille, J.C.; Hepplewhite, C.L.; Mlynczak, M.G.; Russell, J.M., III; Riese, M. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res. 2011, 116, D19107. [Google Scholar] [CrossRef]
- Djuth, F.; Sulzer, M.P.; Gonza’les, S.A.; Mathews, J.D.; Elder, J.H.; Walterscheid, R.L. A continuum of gravity waves in the Arecibo thermosphere? Geophys. Res. Lett. 2004, 31, L16801. [Google Scholar] [CrossRef]
- Oliver, W.L.; Otsuka, Y.; Sato, M.; Takami, T.; Fukao, S. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J. Geophys. Res. 1997, 102, 14499–14512. [Google Scholar] [CrossRef]
- Preusse, P.; Dörnbrack, A.; Eckermann, S.D.; Riese, M.; Schaeler, B.; Bacmeister, J.T.; Broutman, D.; Grossmann, K.U. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. J. Geosphys. Res. 2002, 107, 8178. [Google Scholar] [CrossRef]
- Tsuda, T.; Vanzandt, T.E.; Mizumoto, M.; Kato, S.; Fukao, S. Spectral Analysis of Temperature and Brunt-V äisälä Frequency Fluctuations Observed by Radiosondes. J. Geophys. Res. 1991, 96, 17265–17278. [Google Scholar] [CrossRef]
- Vadas, S.L.; Liu, H.-L.; Lieberman, R.S. Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection. J. Geophys. Res. Space Phys. 2014, 119, 7762–7793. [Google Scholar] [CrossRef]
- Dewan, E. Saturated-cascade similitude theory of gravity wave spectra. J. Geophys. Res. 1997, 102, 799–817. [Google Scholar] [CrossRef]
- Liu, H.; Lu¨hr, H.; Watanabe, S. A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP. J. Geophys. Res. 2009, 36, L10109. [Google Scholar] [CrossRef]
- Djuth, F.T.; Zhang, L.D.; Livneh, D.J.; Seker, I.; Smith, S.M.; Sulzer, M.P.; Mathews, J.D.; Walterscheid, R.L. Arecibo’s thermospheric gravity waves and the case for an ocean source. J. Geophys. Res. 2010, 115, A08305. [Google Scholar] [CrossRef]
- Fritts, D.C.; Vadas, S. Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds. Ann. Geophys. 2008, 26, 3841–3861. [Google Scholar] [CrossRef]
- Takahashi, H.; Taylor, M.J.; Pautet, P.-D.; Medeiros, A.F.; Gobbi, D.; Wrasse, C.M.; Fechine, J.; Abdu, M.A.; Batista, I.S.; Paula, E.; et al. Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign. Ann. Geophys. 2009, 27, 1477–1487. [Google Scholar] [CrossRef]
- Vadas, S.L. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res. 2007, 112, A06305. [Google Scholar] [CrossRef]
- Vadas, S.L.; Liu, H.L. Numerical modeling of the large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 h of deep convection in Brazil. J. Geophys. Res. 2013, 118, 2593–2617. [Google Scholar] [CrossRef]
- Singh, S.; Johnson, F.S.; Powe, R.A. Gravity wave seeding of equatorial plasma bubbles. J. Geophy. Res. 1997, 102, 7399–7410. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Tsuda, T.; Shepherd, M.; Gopalswamy, N. Advancing the understanding of the Sun–Earth interaction—The Climate and Weather of the Sun–Earth System (CAWSES) II. Program Earth Planet. Sci. 2015, 2, 28. [Google Scholar] [CrossRef]
- Krall, J.; Huba, J.D.; Fritts, D.C. On the seeding of equatorial spread F by gravity waves. Geophys. Res. Lett. 2013, 40, 661–664. [Google Scholar] [CrossRef]
TIMED Passes | Vertical Wavelength for Profile 1, λz (km) | Vertical Wavelength for Profile 2, λz (km) | Wavelength Difference (km) |
---|---|---|---|
For Figure 4 | |||
1 | 30.99 | 30.99 | 0.00 |
2 | 23.76 | 22.73 | 1.03 |
3 | 22.73 | 22.73 | 0.00 |
4 | 12.40 | 14.46 | 2.06 |
5 | 25.83 | 29.96 | 4.13 |
6 | 24.79 | 24.79 | 0.00 |
For Figure 5 | |||
1 | 29.96 | 28.93 | 1.03 |
2 | 28.93 | 28.93 | 0.00 |
3 | 19.63 | 19.63 | 0.00 |
4 | 28.93 | 28.93 | 0.00 |
5 | 19.63 | 19.63 | 0.00 |
6 | 19.63 | 19.63 | 0.00 |
For Figure 6 | |||
1 | 19.63 | 19.63 | 0.00 |
2 | 28.93 | 28.93 | 0.00 |
3 | 28.93 | 28.93 | 0.00 |
4 | 29.96 | 28.25 | 1.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigussie, M.; Moldwin, M.; Yizengaw, E. Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations. Atmosphere 2022, 13, 1414. https://doi.org/10.3390/atmos13091414
Nigussie M, Moldwin M, Yizengaw E. Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations. Atmosphere. 2022; 13(9):1414. https://doi.org/10.3390/atmos13091414
Chicago/Turabian StyleNigussie, Melessew, Mark Moldwin, and Endawoke Yizengaw. 2022. "Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations" Atmosphere 13, no. 9: 1414. https://doi.org/10.3390/atmos13091414
APA StyleNigussie, M., Moldwin, M., & Yizengaw, E. (2022). Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations. Atmosphere, 13(9), 1414. https://doi.org/10.3390/atmos13091414