A New Method for the Evaluation and Visualization of Air Pollutant Level Predictions
Abstract
:1. Introduction
2. The Visualization and Evaluation of Large Changes
2.1. Defining Pollutant Level Changes
2.1.1. Defining the Cpred(t) for Photochemical Atmospheric Dispersion Models
2.2. Defining Large Pollutant Level Changes
2.3. Visualizations of C(t) for the Assessment of Model Performance
2.4. Performance Measures
3. How Can the New Visualizations and Measures Improve the Evaluation of Our Models?
3.1. Evaluation of Different Models for PM Prediction in Nova Gorica, Slovenia
3.2. Evaluation of Different Models for Ozone Prediction in Koper, Slovenia
3.3. Comparison of the EMEP MSC-W Model with Statistical Models for the Prediction of PM Levels
Usual Assessment of Model Performance
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Evaluated Models
Appendix B. Time Plots of Observed and Predicted Levels
References
- World Health Organization. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide: Report on a WHO Working Group, Bonn, Germany, 13–15 January 2003; WHO Regional Office for Europe: Copenhagen, Denmark, 2003. [Google Scholar]
- Khaefi, M.; Geravandi, S.; Hassani, G.; Yari, A.; Soltani, F.; Dobaradaran, S.; Moogahi, S.; Mohammadi, M.; Mahboubi, M.; Alavi, N.; et al. Association of particulate matter impact on prevalence of chronic obstructive pulmonary disease in Ahvaz, southwest Iran during 2009–2013. Aerosol Air Qual. Res. 2017, 17, 230–237. [Google Scholar] [CrossRef]
- Momtazan, M.; Geravandi, S.; Rastegarimehr, B.; Valipour, A.; Ranjbarzadeh, A.; Yari, A.R.; Dobaradaran, S.; Bostan, H.; Farhadi, M.; Darabi, F.; et al. An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Rev. 2018, 38, 290–297. [Google Scholar] [CrossRef]
- Shah, A.S.; Lee, K.K.; McAllister, D.A.; Hunter, A.; Nair, H.; Whiteley, W.; Langrish, J.; Newby, D.; Mills, N. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ 2015, 350, h1295. [Google Scholar] [CrossRef] [PubMed]
- European Council. Directive 2008/50/EC of the European Parliament and of the Council. Decis. Counc. 2008, 29, 169–212. [Google Scholar]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model–technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Baker, K.; Scheff, P. Photochemical model performance for PM2.5 sulfate, nitrate, ammonium, and precursor species SO2, HNO3, and NH3 at background monitor locations in the central and eastern United States. Atmos. Environ. 2007, 41, 6185–6195. [Google Scholar] [CrossRef]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef]
- Grell, G.; Peckham, S.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Horowitz, L.; Walters, S.; Mauzerall, D.; Emmons, L.; Rasch, P.; Granier, C.; Tie, X.; Lamarque, J.F.; Schultz, M.; Tyndall, G. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res. Atmos. 2003, 108, 4784. [Google Scholar] [CrossRef]
- Taheri Shahraiyni, H.; Sodoudi, S. Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere 2016, 7, 15. [Google Scholar] [CrossRef]
- Lu, W.Z.; Wang, D. Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Sci. Total Environ. 2008, 395, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Dutot, A.L.; Rynkiewicz, J.; Steiner, F.E.; Rude, J. A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ. Model. Softw. 2007, 22, 1261–1269. [Google Scholar] [CrossRef]
- Faganeli Pucer, J.; Pirš, G.; Štrumbelj, E. A Bayesian approach to forecasting daily air-pollutant levels. Knowl. Inf. Syst. 2018, 57, 635–654. [Google Scholar] [CrossRef]
- Sharma, E.; Deo, R.C.; Prasad, R.; Parisi, A. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms. Sci. Total Environ. 2020, 709, 135934. [Google Scholar] [CrossRef]
- Kocijan, J.; Hančič, M.; Petelin, D.; Božnar, M.Z.; Mlakar, P. Regressor selection for ozone prediction. Simul. Model. Pract. Theory 2015, 54, 101–115. [Google Scholar] [CrossRef]
- de Gennaro, G.; Trizio, L.; Di Gilio, A.; Pey, J.; Pérez, N.; Cusack, M.; Alastuey, A.; Querol, X. Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Sci. Total Environ. 2013, 463, 875–883. [Google Scholar] [CrossRef]
- Thunis, P.; Georgieva, E.; Pederzoli, A. A tool to evaluate air quality model performances in regulatory applications. Environ. Model. Softw. 2012, 38, 220–230. [Google Scholar] [CrossRef]
- Chaloulakou, A.; Grivas, G.; Spyrellis, N. Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment. J. Air Waste Manag. Assoc. 2003, 53, 1183–1190. [Google Scholar] [CrossRef]
- Lu, W.Z.; He, H.D. Comparison of three prediction strategies within PM2.5 and PM10 monitoring networks. Atmos. Pollut. Res. 2019, 11, 590597. [Google Scholar]
- Gu, J.; Yang, B.; Brauer, M.; Zhang, K. Enhancing the evaluation and interpretability of data-driven air quality models. Atmos. Environ. 2021, 246, 118125. [Google Scholar] [CrossRef]
- Mao, W.; Wang, W.; Jiao, L.; Zhao, S.; Liu, A. Modeling air quality prediction using a deep learning approach: Method optimization and evaluation. Sustain. Cities Soc. 2021, 65, 102567. [Google Scholar] [CrossRef]
- Vazquez Santiago, J.; Inoue, K.; Tonokura, K. Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan. Atmosphere 2022, 13, 1187. [Google Scholar] [CrossRef]
- Gregório, J.; Gouveia-Caridade, C.; Caridade, P. Modeling PM2.5 and PM10 Using a Robust Simplified Linear Regression Machine Learning Algorithm. Atmosphere 2022, 13, 1334. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Zhai, H.; Xue, S.; Zhu, T.; Shao, Y.; Liu, Z.; Emery, C.; Yarwood, G.; Wang, Y.; et al. Recommendations on benchmarks for numerical air quality model applications in China–Part 1: PM 2.5 and chemical species. Atmos. Chem. Phys. 2021, 21, 2725–2743. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Y.; Yan, K. A hybrid deep learning technology for PM2.5 air quality forecasting. Environ. Sci. Pollut. Res. 2021, 28, 39409–39422. [Google Scholar] [CrossRef]
- Faganeli Pucer, J.F.; Štrumbelj, E. Impact of changes in climate on air pollution in Slovenia between 2002 and 2017. Environ. Pollut. 2018, 242, 398–406. [Google Scholar] [CrossRef]
- Cheng, C.H.; Huang, S.F.; Teoh, H.J. Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method. Comput. Math. Appl. 2011, 62, 2016–2028. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Clim. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe efficiency index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. A refined index of model performance: A rejoinder. Int. J. Clim. 2013, 33, 1053–1056. [Google Scholar] [CrossRef]
- Carslaw, D.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Muñoz, E.; Martin, M.; Turias, I.; Jimenez-Come, M.; Trujillo, F. Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain. Stoch Environ. Res. Risk Assess. 2014, 28, 1409–1420. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Palazoglu, A.; Sun, W. Prediction of ozone levels using a Hidden Markov Model (HMM) with Gamma distribution. Atmos. Environ. 2012, 62, 64–73. [Google Scholar] [CrossRef]
- Garrido-Perez, J.M.; García-Herrera, R.; Ordóñez, C. Assessing the value of air stagnation indices to reproduce PM10 variability in Europe. Atmosphere 2021, 248, 105258. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Taylor, K. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Stow, C.A.; Jolliff, J.; McGillicuddy, D.J., Jr.; Doney, S.C.; Allen, J.I.; Friedrichs, M.A.; Rose, K.A.; Wallhead, P. Skill assessment for coupled biological/physical models of marine systems. J. Mar. Syst. 2009, 76, 4–15. [Google Scholar] [CrossRef]
- Gjerek, M.; Koleša, T.; Logar, M.; Matavž, L.; Murovec, M.; Rus, M.; Žabkar, R. Kakovost zraka v Sloveniji v letu 2019; Technical Report; ARSO: Ljubljana, Slovenija, 2019. [Google Scholar]
- Horton, D.E.; Skinner, C.B.; Singh, D.; Diffenbaugh, N. Occurrence and persistence of future atmospheric stagnation events. Nat. Clim. Chang. 2014, 4, 698–703. [Google Scholar] [CrossRef]
- Wang, X.; Dickinson, R.E.; Su, L.; Zhou, C.; Wang, K. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Am. Meteorol. Soc. 2018, 99, 105–119. [Google Scholar] [CrossRef]
- Krupa, S.; Manning, W.J. Atmospheric ozone: Formation and effects on vegetation. Environ. Pollut. 1988, 50, 101–137. [Google Scholar] [CrossRef]
- Lange, K.; Little, R.; Taylor, J. Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 1989, 84, 881–896. [Google Scholar] [CrossRef]
- Ahsanullah, M.; Golam Kibria, B.; Shakil, M. Normal and Student’s T Distributions and Their Applications; Atlantis Press: Paris, France, 2014. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The bayesian lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Žabkar, R.; Rakovec, J.; Koračin, D. The roles of regional accumulation and advection of ozone during high ozone episodes in Slovenia: A WRF/Chem modelling study. Atmos. Environ. 2011, 45, 1192–1202. [Google Scholar] [CrossRef]
- Holmes, N.; Morawska, L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faganeli Pucer, J. A New Method for the Evaluation and Visualization of Air Pollutant Level Predictions. Atmosphere 2022, 13, 1456. https://doi.org/10.3390/atmos13091456
Faganeli Pucer J. A New Method for the Evaluation and Visualization of Air Pollutant Level Predictions. Atmosphere. 2022; 13(9):1456. https://doi.org/10.3390/atmos13091456
Chicago/Turabian StyleFaganeli Pucer, Jana. 2022. "A New Method for the Evaluation and Visualization of Air Pollutant Level Predictions" Atmosphere 13, no. 9: 1456. https://doi.org/10.3390/atmos13091456
APA StyleFaganeli Pucer, J. (2022). A New Method for the Evaluation and Visualization of Air Pollutant Level Predictions. Atmosphere, 13(9), 1456. https://doi.org/10.3390/atmos13091456