Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers
Abstract
:1. Introduction
2. Data & Methods
2.1. Atmospheric River Reconnaissance
2.2. Spaceborne Radio Occultation
2.3. Reanalysis
2.4. Example Occultation/Dropsonde Pairs
3. Results
3.1. Density of Sampling and Depth of Penetration of RO
3.2. Comparison with Dropsondes
3.3. Comparison with Reanalysis
3.3.1. Outside and Inside an Atmospheric River
3.3.2. Intercomparison
4. Analysis of the February 2019 Intense AR Event
5. Discussion
6. Conclusions
6.1. Comparison of RO with Dropsondes
- COSMIC-2 refractivity observations are biased low relative to dropsondes, with the bias becoming more negative near the surface, whereas the operational RO dataset is closer to zero mean. The standard deviation for COSMIC-2 relative to dropondes is almost twice as big as the standard deviation for the operational RO dataset.
- Although the number of RO profiles from Spire collocated with dropsondes is relatively samll, comparisons show the Spire profiles are overly smooth in the lower troposphere with radically different characteristics than the other RO constellations, affecting the ability to resolve sharp boundaries. In consequence, the bias of refractivity profiles from Spire relative to dropsondes that would normally be expected to exist only below the boundary layer, for example, tend to contaminate the profiles at higher altitudes, and specifically contaminates the profiles difference with the reanalysis up to 5 km in height.
- Refractivity gradients are smaller in absolute magnitude within the core of an AR than they are in the surrounding environment, leading to deeper penetration of RO profiles within the AR than outside an AR.
- Based on limited collocations, the COSMIC-2 bias relative to dropsondes abruptly decreases at 2.8 km inside an AR and decreases at 1.2 km outside an AR. These heights correspond to where the variations in the vertical gradient of refractivity (dN/dz) become larger and more negative.
- Regions with relatively high moisture at mid-levels, such as beneath the convective outflow within an AR and behind and near the cold front, effectively lift the height of the maximum vertical gradient of refractivity and tend to reduce it. This is in contrast to regions with a well-defined top of the planetary boundary layer (PBL) and little middle level moisture above, such as adjacent to an AR, which have a much lower and larger maximum vertical gradient in refractivity.
6.2. Comparison of Dropsondes with Reanalysis
- The dropsonde dataset showed a positive mean difference with respect to the ERA5 reanalysis of 0.5% N between 1 and 2 km indicating a potential dry bias of ERA5 below the PBL in this environment. In contrast, the three RO datasets had large negative bias with respect to ERA5 greater than −1% N below 1 km, making it unrealistic to expect they are reliable at these levels without further study.
- The standard deviation of the difference between the dropsonde and reanalysis product peaks at 2 km, approximately at the PBL height, and decreases to 1.5% N at the surface. This may indicate that the general decrease in apparent error at about 0.5–1 km often observed in GNSS RO datasets may be realistic and may not be an artifact of the reduced number of profiles (i.e., [83]).
- The standard deviation of the difference between the dropsonde dataset and reanalysis is approximately 0.5–1% N larger within an AR than outside over the height range 1.5–6 km. This indicates the ERA5 does not capture the full variability of humidity within an AR. The operational RO dataset closely follows this pattern above 2 km.
6.3. Comparison of RO with Reanalysis
- The standard deviation of the differences with the reanalysis product for the three RO datasets is nearly constant above 7.5 km and increases approximately linearly towards the surface, peaking between 1 and 2 km. In general the differences follow the type of error model described in [83] but suggest a lower observational error could be used in this AR environment in the range 7.5 to 10 km than is commonly assumed for operational models [88,89].
- The standard deviation of the difference with the reanalysis for the dropsonde and the three RO datasets are all larger inside an AR compared to outside, with the largest values in the COSMIC-2 and Spire datasets.
- The individual refractivity profiles within the Spire dataset are extremely smooth compared to that of the other RO datasets and dropsondes, particularly in the lower troposphere, and are likely contributing to the artifacts seen in the mean difference.
- The COSMIC-2 and Spire RO datasets have much larger standard deviations than that of the operational RO and dropsonde datasets throughout most of the troposphere, with the largest values found in the COSMIC-2 dataset. Spire and COSMIC-2 reach a standard deviation of ∼3.5% N below 2 km, compared to ∼2.8% N for operational RO.
6.4. Characteristics in the Lowest Parts of the Troposphere
- The negative refractivity bias relative to reanalysis below 1 km is larger outside an AR than inside an AR for all three RO datasets. This may indicate that super-refraction or ducting may be worse outside the AR where the refractivity gradient is sharper at the top of the PBL.
- The depth of penetration among the RO datasets is highest in the COSMIC-2 dataset with >90% of occultations reaching down to 1 km, next highest in the Spire dataset (>85% at 1 km), and the lowest in the operational dataset (>65% at 1 km).
- The depth of penetration into the lower troposphere is greater inside an AR than outside in all RO datasets examined. There are approximately 10% more profiles reaching 1 km above the surface inside an AR than outside an AR in all datasets.
- The deeper penetration of RO within an AR is likely due to the fact that the distribution of the vertical gradient in refractivity (dN/dz) is narrower (i.e., less than 500 N-units km) for dropsondes within the AR core where integrated vapor transport (IVT) is >750 kg m s, and progressively wider for lower values of IVT. This could be due to a reduction in dN/dz from greater mixing of humidity into higher levels by moist convection within the core of an AR, compared to outside an AR where there is less variation above the very strong refractivity gradients at the top of the PBL.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Newell, R.E. A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers. Mon. Weather Rev. 1998, 126, 725–735. [Google Scholar] [CrossRef]
- Ralph, F.M.; Iacobellis, S.F.; Neiman, P.J.; Cordeira, J.M.; Spackman, J.R.; Waliser, D.E.; Wick, G.A.; White, A.B.; Fairall, C. Dropsonde Observations of Total Integrated Water Vapor Transport within North Pacific Atmospheric Rivers. J. Hydrometeorol. 2017, 18, 2577–2596. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 2015, 120, 12514–12535. [Google Scholar] [CrossRef]
- Guan, B.; Molotch, N.P.; Waliser, D.E.; Fetzer, E.J.; Neiman, P.J. Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric Rivers, Floods and the Water Resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, M.D. Observed Impacts of Duration and Seasonality of Atmospheric-River Landfalls on Soil Moisture and Runoff in Coastal Northern California. J. Hydrometeorol. 2013, 14, 443–459. [Google Scholar] [CrossRef]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Adusumilli, S.; Fish, M.; Fricker, H.A.; Medley, B. Atmospheric River Precipitation Contributed to Rapid Increases in Surface Height of the West Antarctic Ice Sheet in 2019. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B. Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Lavers, D.A.; Allan, R.P.; Wood, E.F.; Villarini, G.; Brayshaw, D.J.; Wade, A.J. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Villarini, G.; Allan, R.P.; Wood, E.F.; Wade, A.J. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Sodemann, H. Remote sources of water vapor forming precipitation on the Norwegian west coast at 60 N–a tale of hurricanes and an atmospheric river. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Viale, M.; Nuñez, M.N. Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeorol. 2011, 12, 481–507. [Google Scholar] [CrossRef]
- Corringham, T.W.; Ralph, F.M.; Gershunov, A.; Cayan, D.R.; Talbot, C.A. Atmospheric rivers drive flood damages in the western United States. Sci. Adv. 2019, 5, eaax4631. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Alley, R.B.; Emanuel, K.A.; Zhang, F. Advances in weather prediction. Science 2019, 363, 342–344. [Google Scholar] [CrossRef]
- DeFlorio, M.J.; Waliser, D.E.; Guan, B.; Lavers, D.A.; Ralph, F.M.; Vitart, F. Global Assessment of Atmospheric River Prediction Skill. J. Hydrometeorol. 2018, 19, 409–426. [Google Scholar] [CrossRef]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Ota, Y.; Derber, J.C.; Kalnay, E.; Miyoshi, T. Ensemble-based observation impact estimates using the NCEP GFS. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 20038. [Google Scholar] [CrossRef]
- Doyle, J.D.; Amerault, C.; Reynolds, C.A.; Reinecke, P.A. Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Weather Rev. 2014, 142, 320–342. [Google Scholar] [CrossRef]
- Reynolds, C.A.; Doyle, J.D.; Ralph, F.M.; Demirdjian, R. Adjoint sensitivity of North Pacific atmospheric river forecasts. Mon. Weather Rev. 2019, 147, 1871–1897. [Google Scholar] [CrossRef]
- Stone, R.E.; Reynolds, C.A.; Doyle, J.D.; Langland, R.H.; Baker, N.L.; Lavers, D.A.; Ralph, F.M. Atmospheric River Reconnaissance Observation Impact in the Navy Global Forecast System. Mon. Weather Rev. 2020, 148, 763–782. [Google Scholar] [CrossRef]
- Demirdjian, R.; Doyle, J.D.; Reynolds, C.A.; Norris, J.R.; Michaelis, A.C.; Ralph, F.M. A Case Study of the Physical Processes Associated with the Atmospheric River Initial-Condition Sensitivity from an Adjoint Model. J. Atmos. Sci. 2020, 77, 691–709. [Google Scholar] [CrossRef]
- Kursinski, E.; Hajj, G.; Schofield, J.; Linfield, R.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Hajj, G.A.; Kursinski, E.; Romans, L.; Bertiger, W.; Leroy, S. A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys. 2002, 64, 451–469. [Google Scholar] [CrossRef]
- Smith, E.K.; Weintraub, S. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef]
- Solheim, F.S.; Vivekanandan, J.; Ware, R.H.; Rocken, C. Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. J. Geophys. Res. Atmos. 1999, 104, 9663–9670. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Bertiger, W.; Leroy, S.; Meehan, T.; Romans, L.; Schofield, J.; McCleese, D.; Melbourne, W.; Thornton, C.; et al. Initial results of radio occultation observations of Earth’s atmosphere using the Global Positioning System. Science 1996, 271, 1107–1110. [Google Scholar] [CrossRef]
- Anthes, R.A.; Bernhardt, P.; Chen, Y.; Cucurull, L.; Dymond, K.; Ector, D.; Healy, S.; Ho, S.P.; Hunt, D.; Kuo, Y.H.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–334. [Google Scholar] [CrossRef]
- Ho, S.P.; Anthes, R.A.; Ao, C.O.; Healy, S.; Horanyi, A.; Hunt, D.; Mannucci, A.J.; Pedatella, N.; Randel, W.J.; Simmons, A.; et al. The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Am. Meteorol. Soc. 2020, 101, E1107–E1136. [Google Scholar] [CrossRef] [Green Version]
- Healy, S. Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett. 2008, 9, 111–118. [Google Scholar] [CrossRef]
- Healy, S. Surface pressure information retrieved from GPS radio occultation measurements. Q. J. R. Meteorol. Soc. 2013, 139, 2108–2118. [Google Scholar] [CrossRef]
- Aparicio, J.M.; Deblonde, G. Impact of the assimilation of CHAMP refractivity profiles on Environment Canada global forecasts. Mon. Weather Rev. 2008, 136, 257–275. [Google Scholar] [CrossRef]
- Poli, P.; Moll, P.; Puech, D.; Rabier, F.; Healy, S.B. Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. TAO Terr. Atmos. Ocean. Sci. 2009, 20, 1. [Google Scholar] [CrossRef]
- Cucurull, L. Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Weather Forecast. 2010, 25, 749–767. [Google Scholar] [CrossRef]
- Rennie, M. The impact of GPS radio occultation assimilation at the Met Office. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2010, 136, 116–131. [Google Scholar] [CrossRef]
- Bonavita, M. On some aspects of the impact of GPSRO observations in global numerical weather prediction. Q. J. R. Meteorol. Soc. 2014, 140, 2546–2562. [Google Scholar] [CrossRef]
- Bauer, P.; Radnóti, G.; Healy, S.; Cardinali, C. GNSS radio occultation constellation observing system experiments. Mon. Weather. Rev. 2014, 142, 555–572. [Google Scholar] [CrossRef]
- von Engeln, A.; Healy, S.; Marquardt, C.; Andres, Y.; Sancho, F. Validation of operational GRAS radio occultation data. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Ho, S.P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Weiss, J.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, C.Y.; Huang, C.Y.; Hsu, S.C.; Li, H.W.; Lin, P.H.; Cheng, J.P.; Huang, C.Y. An Analysis Study of FORMOSAT-7/COSMIC-2 Radio Occultation Data in the Troposphere. Remote Sens. 2021, 13, 717. [Google Scholar] [CrossRef]
- Hogan, T.F.; Liu, M.; Ridout, J.A.; Peng, M.S.; Whitcomb, T.R.; Ruston, B.C.; Reynolds, C.A.; Eckermann, S.D.; Moskaitis, J.R.; Baker, N.L.; et al. The Navy Global Environmental Model. Oceanography 2014, 27, 116–125. [Google Scholar] [CrossRef]
- Ruston, B.; Healy, S. Forecast impact of FORMOSAT-7/COSMIC-2 GNSS radio occultation measurements. Atmos. Sci. Lett. 2021, 22, e1019. [Google Scholar] [CrossRef]
- Healy, S. ECMWF starts assimilating COSMIC-2 data. ECMWF Newsl. 2020, 163, 5–6. [Google Scholar]
- Masters, D.; Duly, T.; Esterhuizen, S.; Irisov, V.; Jales, P.; Nguyen, V.; Nogués-Correig, O.; Tan, L.; Yuasa, T.; Angling, M. GNSS-Based Earth Observations from the Growing Spire Nanosatellite Constellation. In Lecture given at the 5th International Conference on GPS Radio Occultation; National Space Organization: Hsinchu, Taiwan, 2020; p. AB076. [Google Scholar]
- Harnisch, F.; Healy, S.; Bauer, P.; English, S. Scaling of GNSS radio occultation impact with observation number using an ensemble of data assimilations. Mon. Weather Rev. 2013, 141, 4395–4413. [Google Scholar] [CrossRef]
- Walters, D.; Brooks, M.; Boutle, I.; Melvin, T.; Stratton, R.; Vosper, S.; Wells, H.; Williams, K.; Wood, N.; Allen, T.; et al. The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef]
- Bowler, N. An assessment of GNSS radio occultation data produced by Spire. Q. J. R. Meteorol. Soc. 2020, 146. [Google Scholar] [CrossRef]
- Ruston, B. GNSS-RO Use with the NAVGEM System. In Lecture given at the 5th International Conference on GPS Radio Occultation; National Space Organization: Hsinchu, Taiwan, 2020; p. AB081. [Google Scholar]
- Ao, C.O.; Meehan, T.; Hajj, G.; Mannucci, A.; Beyerle, G. Lower troposphere refractivity bias in GPS occultation retrievals. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Xie, F.; Wu, D.; Ao, C.; Mannucci, A.; Kursinski, E. Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys. 2012, 12, 903–918. [Google Scholar] [CrossRef]
- Ao, C.O.; Waliser, D.E.; Chan, S.K.; Li, J.L.; Tian, B.; Xie, F.; Mannucci, A.J. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.N.; de la Torre Juárez, M.; Ao, C.O.; Xie, F. Correcting negatively biased refractivity below ducts in GNSS radio occultation: An optimal estimation approach towards improving planetary boundary layer (PBL) characterization. Atmos. Meas. Tech. 2017, 10, 4761–4776. [Google Scholar] [CrossRef]
- Wang, K.N.; Ao, C.O.; Juarez, M.d.l.T. GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal. Remote Sens. 2020, 12, 359. [Google Scholar] [CrossRef]
- Ralph, F.M.; Cannon, F.; Tallapragada, V.; Davis, C.A.; Doyle, J.D.; Pappenberger, F.; Subramanian, A.; Wilson, A.M.; Lavers, D.A.; Reynolds, C.A.; et al. West Coast forecast challenges and development of atmospheric river reconnaissance. Bull. Am. Meteorol. Soc. 2020, 101, E1357–E1377. [Google Scholar] [CrossRef]
- Zheng, M.; Delle Monache, L.; Wu, X.; Ralph, F.M.; Cornuelle, B.; Tallapragada, V.; Haase, J.S.; Wilson, A.M.; Mazloff, M.; Subramanian, A.; et al. Data gaps within atmospheric rivers over the northeastern Pacific. Bull. Am. Meteorol. Soc. 2021, 102, E492–E524. [Google Scholar] [CrossRef]
- Cobb, A.; Ralph, F.M.; Tallapragada, V.; Wilson, A.M.; Davis, C.A.; Monache, L.D.; Doyle, J.D.; Pappenberger, F.; Reynolds, C.A.; Subramanian, A.; et al. Atmospheric River Reconnaissance 2021: A Review. Weather Forecast. 2022. [Google Scholar] [CrossRef]
- Zheng, M.; Delle Monache, L.; Cornuelle, B.D.; Ralph, F.M.; Tallapragada, V.S.; Subramanian, A.; Haase, J.S.; Zhang, Z.; Wu, X.; Murphy, M.J.; et al. Improved forecast skill through the assimilation of dropsonde observations from the Atmospheric River Reconnaissance program. J. Geophys. Res. Atmos. 2021, 126, e2021JD034967. [Google Scholar] [CrossRef]
- Haase, J.; Murphy, M.; Cao, B.; Ralph, F.; Zheng, M.; Delle Monache, L. Multi-GNSS Airborne Radio Occultation Observations as a Complement to Dropsondes in Atmospheric River Reconnaissance. J. Geophys. Res. Atmos. 2021, 126, e2021JD034865. [Google Scholar] [CrossRef]
- Centurioni, L.R. Drifter technology and impacts for sea surface temperature, sea-level pressure, and ocean circulation studies. In Observing the Oceans in Real Time; Springer: Berlin/Heidelberg, Germany, 2018; pp. 37–57. [Google Scholar]
- Cobb, A.; Michaelis, A.; Iacobellis, S.; Ralph, F.; Delle Monache, L. Atmospheric River Sectors: Definition and Characteristics Observed Using Dropsondes from 2014 to 20 CalWater and AR Recon. Mon. Weather Rev. 2021, 149, 623–644. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Does ERA-5 outperform other reanalysis products for hydrologic applications in India? J. Geophys. Res. Atmos. 2019, 124, 9423–9441. [Google Scholar] [CrossRef]
- Cobb, A.; Delle Monache, L.; Cannon, F.; Ralph, F. Representation of Dropsonde-Observed Atmospheric River Conditions in Reanalyses. Geophys. Res. Lett. 2021, 48, e2021GL093357. [Google Scholar] [CrossRef]
- Kirchengast, G.; Hafner, J.; Poetzi, W. The CIRA-86aQ_UoG Model: An Extension of the CIRA-86 Monthly Tables including Humidity Tables and a Fortran95 Global Moist Air Climatology Model. 1999. Available online: https://cir.nii.ac.jp/crid/1570291225144589056 (accessed on 11 July 2022).
- Poli, P.; Joiner, J.; Kursinski, E.R. 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J. Geophys. Res. Atmos. 2002, 107, ACL 14-1–ACL 14-20. [Google Scholar] [CrossRef]
- Schreiner, W.; Sokolovskiy, S.; Hunt, D.; Rocken, C.; Kuo, Y.H. Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos. Meas. Tech. 2011, 4, 2255–2272. [Google Scholar] [CrossRef]
- Sokolovskiy, S. Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci. 2003, 38. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D. On the uncertainty of radio occultation inversions in the lower troposphere. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Muradyan, P.; Haase, J.S.; Xie, F.; Garrison, J.L.; Voo, J. GPS/INS navigation precision and its effect on airborne radio occultation retrieval accuracy. GPS Solut. 2011, 15, 207–218. [Google Scholar] [CrossRef]
- Xie, F.; Haase, J.S.; Syndergaard, S. Profiling the atmosphere using the airborne GPS radio occultation technique: A sensitivity study. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3424–3435. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Guo, P.; Kuo, Y.H.; Sokolovskiy, S.; Lenschow, D. Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci. 2011, 68, 1703–1713. [Google Scholar] [CrossRef]
- Wang, K.N.; Garrison, J.L.; Acikoz, U.; Haase, J.S.; Murphy, B.J.; Muradyan, P.; Lulich, T. Open-loop tracking of rising and setting GPS radio-occultation signals from an airborne platform: Signal model and error analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3967–3984. [Google Scholar] [CrossRef]
- Ralph, F.M.; Rutz, J.J.; Cordeira, J.M.; Dettinger, M.; Anderson, M.; Reynolds, D.; Schick, L.J.; Smallcomb, C. A Scale to Characterize the Strength and Impacts of Atmospheric Rivers. Bull. Am. Meteorol. Soc. 2019, 100, 269–289. [Google Scholar] [CrossRef]
- Hatchett, B.J.; Cao, Q.; Dawson, P.B.; Ellis, C.J.; Hecht, C.W.; Kawzenuk, B.; Lancaster, J.; Osborne, T.; Wilson, A.M.; Anderson, M.; et al. Observations of an Extreme Atmospheric River Storm With a Diverse Sensor Network. Earth Space Sci. 2020, 7, e2020EA001129. [Google Scholar] [CrossRef]
- Chen, S.; Reynolds, C.A.; Schmidt, J.M.; Papin, P.P.; Janiga, M.A.; Bankert, R.; Huang, A. The Effect of a Kona Low on the Eastern Pacific Valentine’s Day (2019) Atmospheric River. Mon. Weather Rev. 2022. [Google Scholar] [CrossRef]
- Hecht, C.W.; Michaelis, A.C.; Martin, A.C.; Cordeira, J.M.; Cannon, F.; Ralph, F.M. Illustrating Ensemble Predictability across Scales Associated with the 13–15 February 2019 Atmospheric River Event. Bull. Am. Meteorol. Soc. 2022, 103, E911–E922. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Kiladis, G.N.; Weickmann, K.; Reynolds, D.W. A Multiscale Observational Case Study of a Pacific Atmospheric River Exhibiting Tropical—-Extratropical Connections and a Mesoscale Frontal Wave. Mon. Weather Rev. 2011, 139, 1169–1189. [Google Scholar] [CrossRef]
- Martin, A.C.; Ralph, F.M.; Wilson, A.; DeHaan, L.; Kawzenuk, B. Rapid cyclogenesis from a mesoscale frontal wave on an atmospheric river: Impacts on forecast skill and predictability during atmospheric river landfall. J. Hydrometeorol. 2019, 20, 1779–1794. [Google Scholar] [CrossRef]
- Michaelis, A.C.; Martin, A.C.; Fish, M.A.; Hecht, C.W.; Ralph, F.M. Modulation of atmospheric rivers by mesoscale frontal waves and latent heating: Comparison of two US West Coast events. Mon. Weather Rev. 2021, 149, 2755–2776. [Google Scholar] [CrossRef]
- Chen, S.Y.; Huang, C.Y.; Kuo, Y.H.; Sokolovskiy, S. Observational error estimation of FORMOSAT-3/COSMIC GPS radio occultation data. Mon. Weather Rev. 2011, 139, 853–865. [Google Scholar] [CrossRef]
- Bowler, N.E. Revised GNSS-RO observation uncertainties in the Met Office NWP system. Q. J. R. Meteorol. Soc. 2020, 146, 2274–2296. [Google Scholar] [CrossRef]
- Healy, S.; Thépaut, J.N. Assimilation experiments with CHAMP GPS radio occultation measurements. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2006, 132, 605–623. [Google Scholar] [CrossRef]
- Riehl, H.; Yeh, T.; Malkus, J.; Laseur, N. The northeast trade of the Pacific Ocean. Q. J. R. Meteorol. Soc. 1951, 77, 598–626. [Google Scholar] [CrossRef]
- Chen, S.; Huang, C.; Kuo, Y.; Guo, Y.; Sokolovskiy, S.; Stract, A.B. Assimilation of GPS Refractivity from FORMOSAT-3/COSMIC Using a Nonlocal Operator with WRF 3DVAR and Its Impact on the Prediction of a Typhoon Event. Terr. Atmos. Ocean. Sci. 2009, 20, 133–154. [Google Scholar] [CrossRef]
- Cucurull, L.; Derber, J. Operational implementation of COSMIC observations into NCEP’s global data assimilation system. Weather Forecast. 2008, 23, 702–711. [Google Scholar] [CrossRef]
- Ruston, B. Considerations for GNSS-RO Bending Angle Observation Error. JCSDA Q. 2019, 62, 18–21. [Google Scholar] [CrossRef]
Dataset | Samples (#) | IOPs (#) | Samples/IOP | Density/IOP (# deg) |
---|---|---|---|---|
Operational RO | 3735 | 29 | 128.8 | 0.037 |
COSMIC-2 RO | 4517 | 17 | 265.7 | 0.076 |
Spire RO | 342 | 6 | 57.0 | 0.016 |
Combined | 8594 | 29 | 296.3 | 0.085 |
Dataset | Samples (#) | IOPs (#) | Samples/IOP | Density/IOP (# deg) |
---|---|---|---|---|
Operational RO | 727 | 29 | 25.1 | 0.007 |
COSMIC-2 RO | 1072 | 17 | 63.1 | 0.018 |
Spire RO | 51 | 6 | 8.5 | 0.002 |
Combined | 1850 | 29 | 63.8 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, M.J., Jr.; Haase, J.S. Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers. Atmosphere 2022, 13, 1495. https://doi.org/10.3390/atmos13091495
Murphy MJ Jr., Haase JS. Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers. Atmosphere. 2022; 13(9):1495. https://doi.org/10.3390/atmos13091495
Chicago/Turabian StyleMurphy, Michael J., Jr., and Jennifer S. Haase. 2022. "Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers" Atmosphere 13, no. 9: 1495. https://doi.org/10.3390/atmos13091495
APA StyleMurphy, M. J., Jr., & Haase, J. S. (2022). Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers. Atmosphere, 13(9), 1495. https://doi.org/10.3390/atmos13091495