COSMIC-2 Mission Summary at Three Years in Orbit
Abstract
:1. Introduction
2. Mission Status and Milestones
2.1. Satellite Constellation
2.2. Payloads
2.3. Ground Segment
2.4. Data Processing Centers
- Data intake and level 0 (mission/instrument specific) to level 1 (generic) data format conversion;
- Quality control, packaging in external data formats as required, and delivery of products to users [17].
- Collection of all available data (including downlinks delivered too late for NRT) into 24 h batches;
- Utilization of International GNSS Service Final GNSS orbits and clocks (the highest precision product);
- Daily POD using a 24 h arc;
- Utilization of the ERA5 short term-forecast as the 1D-var background.
2.5. Program Milestones
3. Requirements, Products, and Performance
3.1. Key Requirements
3.2. Current Products
3.3. Benefits to NWP and Space Weather Operations and Research
3.4. Future Products
- UHF scintillation “all clear.” Utilizes 1 Hz POD signal to noise ratio observations to identify regions where scintillation if unlikely to be present. This product will be generated at rapid cadence (<30 min) to support space weather monitoring.
- Ionosphere “bubble map.” Aggregates scintillation geolocations over time to identify regions and times with the presence of ionospheric irregularities.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett. 2022, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Tien, J.Y.; Okihiro, B.B.; Esterhuizen, S.X.; Franklin, G.W.; Meehan, T.K.; Munson, T.N.; Robison, D.E.; Turbiner, D.; Young, L.E. Next generation scalable spaceborne GNSS science receiver. In Proceedings of the International Technical Meeting of The Institute of Navigation, Newport Beach, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Heelis, R.A.; Stoneback, R.A.; Perdue, M.D.; Depew, M.D.; Morgan, W.A.; Mankey, M.W.; Lippincott, C.R.; Harmon, L.L.; Holt, B.J. Ion velocity measurements for the ionospheric connections explorer. Space Sci. Rev. 2017, 212, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, T.Y.; Huang, C.Y.; Yeh, W.H.; Tseng, T.P.; Chen, K.L.; Macalalad, E.P.; Vallar, E.A.; Galvez, M.C.D. The observations of localize ionospheric scintillation structure by FORMOSAT-7/COSMIC-2 Tri-band Beacon network. Terr. Atmos. Ocean. Sci. 2022, 33, 10. [Google Scholar] [CrossRef]
- Ruston, B.; Healy, S. Forecast impact of FORMOSAT-7/COSMIC-2 GNSS radio occultation measurements. Atmos. Sci. Lett. 2021, 22, e1019. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, H.; Dutta, S.; Yoe, J.; Collard, A.; Kleist, D.; Auligné, T. GNSS-RO data assimilation advancement and implementation at JCSDA and NCEP. In Proceedings of the 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 12–16 January 2020. [Google Scholar]
- Lien, G.Y.; Lin, C.H.; Huang, Z.M.; Teng, W.H.; Chen, J.H.; Lin, C.C.; Ho, H.H.; Huang, J.Y.; Hong, J.S.; Cheng, C.P.; et al. Assimilation impact of early FORMOSAT-7/COSMIC-2 GNSS radio occultation data with Taiwan’s CWB Global Forecast System. Mon. Weather. Rev. 2021, 149, 2171–2191. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lin, C.H.; Rajesh, P.K.; Lin, C.Y.; Chang, F.Y.; Lee, I.T.; Fang, T.W.; Fuller-Rowell, D.; Chen, S.P. Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations. Atmosphere 2022, 13, 858. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Anderson, J.L. The Impact of Assimilating COSMIC-2 Observations of Electron Density in WACCMX. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029906. [Google Scholar] [CrossRef]
- Anthes, R.; Sjoberg, J.; Feng, X.; Syndergaard, S. Comparison of COSMIC and COSMIC-2 Radio Occultation Refractivity and Bending Angle Uncertainties in August 2006 and 2021. Atmosphere 2022, 13, 790. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, C.Y.; Huang, C.Y.; Hsu, S.C.; Li, H.W.; Lin, P.H.; Cheng, J.P.; Huang, C.Y. An analysis study of FORMOSAT-7/COSMIC-2 radio occultation data in the troposphere. Remote Sens. 2021, 13, 717. [Google Scholar] [CrossRef]
- Johnston, B.R.; Randel, W.J.; Sjoberg, J.P. Evaluation of tropospheric moisture characteristics among COSMIC-2, ERA5 and MERRA-2 in the tropics and subtropics. Remote Sens. 2021, 13, 880. [Google Scholar] [CrossRef]
- Ho, S.P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Braun, J.; Wu, Q.; Pedatella, N.; Schreiner, W.; Weiss, J.P.; Hunt, D. Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements. J. Space Weather Space Clim. 2021, 11, 8. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Zakharenkova, I.; Braun, J.J.; Cherniak, I.; Hunt, D.; Schreiner, W.S.; Straus, P.R.; Valant-Weiss, B.L.; Vanhove, T.; Weiss, J.; et al. Processing and validation of FORMOSAT-7/COSMIC-2 GPS total electron content observations. Radio Sci. 2021, 56, 1–12. [Google Scholar] [CrossRef]
- Wu, Q.; Pedatella, N.M.; Braun, J.J.; Schreiner, W.; Weiss, J.; Chou, M.; Zakharenkova, I.; Cherniak, I.; Hunt, D.; Heelis, R.; et al. Comparisons of Total Ion Density Derived from IVM and GNSS TEC on the FORMOSAT-7/COSMIC-2 Mission. J. Geophys. Res.-Space Phys. 2022, 127, e2022JA030392. [Google Scholar] [CrossRef]
- Weiss, J.; Anthes, R.; Braun, J.; Cherniak, I.; Galimore, J.; Hager, J.; Hoekstra, M.; Huelsing, H.; Hunt, D.; Lauer, E.; et al. FORMOSAT-7/COSMIC-2 Radio Occultation Data Processing Status and Results. In Proceedings of the AMS Annual Meeting, Boston, MA, USA, 16–20 January 2020. [Google Scholar]
- Chu, C.H.; Huang, C.Y.; Fong, C.J.; Chen, S.Y.; Chen, Y.H.; Yeh, W.H.; Kuo, Y.H. Atmospheric remote sensing using global navigation satellite systems: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Terr. Atmos. Ocean. Sci. 2021, 32, 1–13. [Google Scholar] [CrossRef]
- Weiss, J.P. Recent Precise Orbit Determination Results for the COSMIC-2 Mission. In Proceedings of the 43rd COSPAR Scientific Assembly, Online, 28 January–4 February 2021; Volume 43, p. 2337. [Google Scholar]
- Jaeggi, A.; Arnold, D.; Weiss, J.; Hunt, D. Assessment of COSMIC-2 reduced-dynamic and kinematic orbit determination. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021; EGU21-12027. [Google Scholar]
- Wee, T.K.; (UCAR, Boulder, CO, USA). Personal communication, 2022.
- Pedatella, N.M.; Zakharenkova, I.; Braun, J.; Cherniak, I.; Hunt, D.; Schreiner, W.; Straus, P.; Valant-Weiss, B.; Vanhove, T.; Weiss, J.; et al. Processing and Validation of FORMOSAT-7/COSMIC-2 GLONASS Total Electron Content Observations. RS 2022, submitted.
- FORMOSAT-7/COSMIC-2 Space Weather Data Release 2: Absolute GPS Total Electron Content Data Release Notes. Available online: https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/F7C2_SpWx_GPS_Absolute_TEC_Data_Release_Memo.pdf (accessed on 30 June 2022).
- FORMOSAT-7/COSMIC-2 Space Weather Data Release 3: Absolute GLONASS Total Electron Content Data Release Notes. Available online: https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/F7C2_SpWx_GLO_Absolute_TEC_Data_Release_Memo.pdf (accessed on 30 June 2022).
- FORMOSAT-7/COSMIC-2 Space Weather Data Release 4: IVM In-Situ Ion Density Release Notes. Available online: https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/F7C2_SpWx_IVM_Density_Data_Release_Memo.pdf (accessed on 30 June 2022).
- FORMOSAT-7/COSMIC-2 Space Weather Data Release 5: High-Rate Scintillation Data Release Notes. Available online: https://www.cosmic.ucar.edu/sites/default/files/2022-04/COSMIC-2_SpWx_DataRelease_5_Final_Signed.pdf (accessed on 30 June 2022).
- Schreiner, B.; Sokolovskiy, S.; Weiss, J.; Braun, J.; Anthes, R.; Kuo, Y.; Hunt, D.; Zeng, Z.; Wee, T.; VanHove, T.; et al. Performance Assessment and Verification of FORMOSAT-7/COSMIC-2 GNSS Neutral Atmospheric Radio Occultation Data. In Proceedings of the AMS Annual Meeting, Boston, MA, USA, 16–20 January 2020. [Google Scholar]
- World Meteorological Organization Global Telecommunication System. Available online: https://public.wmo.int/en/programmes/global-telecommunication-system (accessed on 30 June 2022).
- COSMIC Data Analysis and Archive Center COSMIC-2 Data. Available online: https://www.cosmic.ucar.edu/what-we-do/cosmic-2/data (accessed on 30 June 2022).
- Taiwan Analysis Center for COSMIC-2 Data. Available online: https://tacc.cwb.gov.tw/v2/download.html (accessed on 30 June 2022).
- Receiver Independent Navigation EXchange Format. Available online: https://files.igs.org/pub/data/format/ (accessed on 30 June 2022).
- The Extended Standard Product 3 Orbit Format (SP3-d). Available online: https://files.igs.org/pub/data/format/ (accessed on 30 June 2022).
- WMO FM94 (BUFR) Specification for Radio Occultation Data. Available online: https://www.romsaf.org/romsaf_bufr.pdf (accessed on 30 June 2022).
- Sokolovskiy, S.; Schreiner, W.; Weiss, J.; Zeng, Z.; Hunt, D.; Braun, J. Initial Assessment of COSMIC-2 Data in the Lower Troposphere (LT). Joint 6th ROM SAF User Workshop and 7th IROWG Workshop. 2019. Available online: https://www.romsaf.org/romsaf-irowg-2019/en/open/1570202428.cf195c6aa62789cfb81f06d529ecdf0f.pdf/Sokolovskiy__IROWG-UCAR-C2-LT_Final.pdf (accessed on 30 June 2022).
- Randel, W.J.; Wu, F.; Podglajen, A. Equatorial waves, diurnal tides and small-scale thermal variability in the tropical lower stratosphere from COSMIC-2 radio occultation. J. Geophys. Res. Atmos. 2021, 126, e2020JD033969. [Google Scholar] [CrossRef]
- Carrano, C.S.; Groves, K.M.; Rino, C.L.; McNeil, W.J.; Caton, R.G.; Straus, P.R. Geolocation of Ionospheric Irregularities using COSMIC-2 Observations of Radio Occultation Scintillation. In Proceedings of the AGU Fall Meeting Abstracts, Online, 7–17 December 2020; p. SA032-07. [Google Scholar]
- Wu, Q.; Braun, J.; Schreiner, W.; Sokolovskiy, S.; Pedatella, N.; Cherniak, I.; Zakharenkova, I.; Chou, M.-Y. Equatorial Ionospheric Irregularities Observed by COSMIC 2 and GOLD Missions. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021; p. EGU21-1881. [Google Scholar]
Flight Model | Current Apogee Orbit Altitude, Inclination, RAAN | Orbit Adjustment Dates |
---|---|---|
1 | 546 km, 24 deg, 245 deg | 22-07-2019 to 15-08-2019 |
2 | 547 km, 24 deg, 360 deg | 05-11-2019 to 22-11-2019 and 21-02-2020 to 23-03-2020 |
3 | 545 km, 24 deg, 70 deg | 08-06-2020 to 16-07-2020 |
4 | 542 km, 24 deg, 307 deg | 15-11-2019 to 21-01-2020 and 15-02-2021 to 20-02-2021 |
5 | 543 km, 24 deg, 125 deg | 23-09-2020 to 19-10-2020 |
6 | 539 km, 24 deg, 184 deg | 10-01-2021 to 03-02-2021 |
Software Version | Key Features | Date |
---|---|---|
v4.3.2 | Corrected reboot issue. | September 2019 |
v4.3.3 | Reduced troposphere & ionosphere data loss; corrected GLONASS pseudorange noise problem; connected phase for GLONASS high-rate (HR) ionosphere data. | November 2019 |
v4.3.4 | Improved tracking channel allocation; provide 1 sec SNRs (instead of 10 sec); connected phase for GPS HR data; address connected phase problem for GLONASS high rate ionosphere data; improved HR scintillation trigger algorithm. | February 2020 |
v4.3.5 | Improved GPS & GLONASS observation scheduling; corrected GPS HR L2 & HR scintillation incomplete profile problems; fixed issue with high-rate scintillation data volume limiting algorithm. | August 2020 |
v4.3.6 | Improvements to GLONASS scheduling & channel management; improved autonomous detection of hangup events requiring reboot. | February 2021 |
v4.4.0 | Improved ionosphere tracking through sporadic-E layers; improved GLONASS observation scheduling; improved acquisition of rising L2P signals; correct issue with corrupted GLONASS HR data. | September 2021 |
v4.4.1 | Reduced time to resume tracking following restarts; improvements to GLONASS ionosphere scheduling and tracking through larger azimuth ranges. | December 2021 |
v4.4.2 | Further improvements to tracking through sporadic-E layers; correct occasional issue with occultation height of straight-line computation; improved trigger to collect more HR ionosphere data. | July 2022 |
Milestone | Date | Comments |
---|---|---|
First payload activation | 16-07-2019 | Checkout begins |
Satellite IOC | 22-10-2019 | Formal program review |
Neutral atmosphere data release 1 | 10-12-2019 | Provisional TGRS products |
Neutral atmosphere IOC | 24-02-2020 | Formal program review |
Neutral atmosphere data release 2 | 06-03-2020 | Validated TGRS products |
Ionosphere data release 1 | 30-03-2020 | Provisional TGRS relative TEC, onboard S4, electron density profiles |
Ionosphere data release 2 | 18-09-2020 | TGRS GPS absolute TEC |
Ionosphere IOC | 19-11-2020 | Formal program review |
Ionosphere data release 3 | 29-01-2021 | TGRS GLONASS absolute TEC |
Ionosphere data release 4 | 29-03-2021 | IVM ion density |
Neutral atmosphere FOC | 31-03-2021 | Formal program review |
Mission FOC | 15-09-2021 | Formal program review |
Ionosphere data release 5 | 16-03-2022 | High rate observation scintillation indices, early orbit IVM ion temperature, composition, and drift |
Description | Requirement | Verification Status |
---|---|---|
Neutral atmosphere profiles per day passing QC | >4000 | Met, typically >5000, ref. Section 3 |
Neutral atmosphere profile median product latency per day | <45 min | Met, typically ~28 min, ref. Section 3 |
Bending angle uncertainty, 30–60 km | 2 μrad | Met, 1.6 μrad [27]. |
Refractivity uncertainty, 10–20 km | 0.1 N units | Met, 0.076 N units [27]. |
TEC occultations per day | >6000 | Met 33% of days January–May 2022, and 42% of days in May 2022. Average January–May 2022 is 5797 and May 2022 is 5870. Waiver issued. Waiver issued for 91.5% compliance. |
Combined TEC arcs and occultations per day | >12,000 | Met 31% of days January–May 2022, and 65% of days in May 2022. Average January–May 2022 is 11,626 and May 2022 is 11,948. Waiver issued for 91.5% compliance. |
Absolute TEC uncertainty | 3 TECU | Met, estimated 2.5 TECU for GPS and 2.6 TECU for GLONASS [15,22] |
TEC product median latency per day | <30 min | Met, typically ~28 min, ref. Section 3 |
IVM in-situ plasma density precision | 1% | Met, ref. [25] |
Type | File Format | Comments |
---|---|---|
Level 0 data | trgLv0 | Decoder software available on CDAAC data site |
Satellite attitude | leoAtt | |
RO antenna observations | opnGns | |
POD antenna observations | podCrx (RINEX) | Ref. [31] |
POD estimates | leoOrb (SP3) | Ref. [32] |
High rate RO observations | opnGns (binary) | |
Excess phase | conPhs | Nav bits removed |
Neutral atm. retrieval | atmPrf | |
Neutral atm. model profiles | avnPrf, echPrf | Derived from Global Forecast System and ECMWF global NWP models |
1D var retrieval | wetPf2 | |
Neutral atm. BUFR | BUFR (binary) | Ref. [33] |
Electron density profiles | ionPrf | |
Absolute TEC | podTc2 | |
Scintillation amplitude and RFIindices | scn1c2 | Onboard computed amplitude index |
High rate POD antenna observations for scintillation monitoring | scnPhs | |
Scintillation amplitude, phase and RFI indices | scnLv2 | Ground computed from high rate observations |
IVM in-situ plasma density, composition, temp | ivmLv2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, J.-P.; Schreiner, W.S.; Braun, J.J.; Xia-Serafino, W.; Huang, C.-Y. COSMIC-2 Mission Summary at Three Years in Orbit. Atmosphere 2022, 13, 1409. https://doi.org/10.3390/atmos13091409
Weiss J-P, Schreiner WS, Braun JJ, Xia-Serafino W, Huang C-Y. COSMIC-2 Mission Summary at Three Years in Orbit. Atmosphere. 2022; 13(9):1409. https://doi.org/10.3390/atmos13091409
Chicago/Turabian StyleWeiss, Jan-Peter, William S. Schreiner, John J. Braun, Wei Xia-Serafino, and Cheng-Yung Huang. 2022. "COSMIC-2 Mission Summary at Three Years in Orbit" Atmosphere 13, no. 9: 1409. https://doi.org/10.3390/atmos13091409
APA StyleWeiss, J. -P., Schreiner, W. S., Braun, J. J., Xia-Serafino, W., & Huang, C. -Y. (2022). COSMIC-2 Mission Summary at Three Years in Orbit. Atmosphere, 13(9), 1409. https://doi.org/10.3390/atmos13091409