Comprehensive Evaluation of Odor-Causing VOCs from the Painting Process of the Automobile Manufacturing Industry and Its Sustainable Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Direct Measurement and VOCs Emission Estimates
2.2.1. Stacks
2.2.2. Wastewater Treatment Process (WWTs)
2.2.3. Quality Assurance and Quality Control (QA/QC)
2.3. Dispersion Modeling and Source Apportionment Evaluation
Model Configuration
2.4. Odor Evaluation
2.5. Scenarios Analysis
2.5.1. Business-as-Usual Scenario
2.5.2. Physical Modification
3. Results and Discussion
3.1. VOC Concentration under the BAU Scenario
3.2. Odor Library
3.3. Source Contribution
3.4. Mitigation Measure Analysis
3.4.1. Physical Modification
3.4.2. Emission Reduction
4. Conclusions
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Nie, L.; Li, J.; Wang, Y.; Wang, G.; Wang, J.; Hao, Z. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin. Sci. Bull. 2013, 58, 724–730. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, X.; Wang, H.; Zhou, L.; Wang, B. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China. Environ. Pollut. 2017, 220 (Pt B), 963–970. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, S.; Fu, Q.; Han, D.; Chen, X.; Fu, S.; Huang, X.; Cheng, J. Impact of VOCs emission from iron and steel industry on regional O3 and PM2.5 pollutions. Environ. Sci. Pollut. Res. 2020, 27, 28853–28866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, W.; Nie, L.; Shao, X.; Dang, H.; Zhang, W.; Wang, D. A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example. Environ. Pollut. 2021, 268, 115868. [Google Scholar] [CrossRef] [PubMed]
- Guven, D.; Hanhan, O.; Aksoy, E.C.; Insel, G.; Cokgor, E. Impact of paint shop decanter effluents on biological treatability of automotive industry wastewater. J. Hazard. Mater. 2017, 330, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Onofre, A.; Godina, R.; Carvalho, H.; Catarino, I. Eco-innovation in the cleaning process: An application of dry ice blasting in automotive painting industry. J. Clean. Prod. 2020, 272, 122987. [Google Scholar] [CrossRef]
- Kim, B.R. VOC emissions from automotive painting and their control: A review. Environ. Eng. Res. 2011, 16, 1–9. [Google Scholar] [CrossRef]
- Chang, C.-T.; Lee, C.-H.; Wu, Y.-P.; Jeng, F.-T. Assessment of the strategies for reducing volatile organic compound emissions in the automotive industry in Taiwan. Resour. Conserv. Recycl. 2002, 34, 117–128. [Google Scholar] [CrossRef]
- Hu, R.; Liu, G.; Zhang, H.; Xue, H.; Wang, X.; Lam, P.K.S. Odor pollution due to industrial emission of volatile organic compounds: A case study in Hefei, China. J. Clean. Prod. 2020, 246, 119075. [Google Scholar] [CrossRef]
- Bajaj, M.; Winter, J. Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation. J. Environ. Manag. 2013, 128, 522–529. [Google Scholar] [CrossRef]
- Gallego, E.; Roca, F.J.; Perales, J.F.; Sánchez, G.; Esplugas, P. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS. Waste Manag. 2012, 32, 2469–2481. [Google Scholar] [CrossRef] [PubMed]
- Nair, K.S.; Manu, B.; Azhoni, A. Sustainable treatment of paint industry wastewater: Current techniques and challenges. J. Environ. Manag. 2021, 296, 113105. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Guo, H. Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies. Sci. Total Environ. 2019, 690, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Han, M.F.; Jia, T.P.; Hu, X.R.; Zhu, H.Q.; Tong, Z.; Lin, Y.T.; Wang, C.; Liu, D.Z.; Peng, Y.Z.; et al. Emissions, measurement, and control of odor in livestock farms: A review. Sci. Total Environ. 2021, 776, 145735. [Google Scholar] [CrossRef]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le Roux, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2019, 201, 1–12. [Google Scholar] [CrossRef]
- EPA. User’s Guide for WATER9 Software; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Washington, DC, USA, 2001. Available online: https://www3.epa.gov/ttnchie1/software/water/water9_3/index.html (accessed on 21 November 2021).
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017; Available online: https://engage.awwa.org/PersonifyEbusiness/Store/Product-Details/productId/65266295 (accessed on 30 October 2021).
- EPA. Air Emissions Models for Waste and Wastewater; Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 1994. Available online: https://www3.epa.gov/ttnchie1/software/water/air_emission_models_waste_wastewater.pdf (accessed on 20 November 2021).
- Cheng, W.-H.; Chou, M.-S. VOC Emission Characteristics of Petrochemical Wastewater Treatment Facilities in Southern Taiwan. J. Environ. Sci. Health Part A 2003, 38, 2521–2535. [Google Scholar] [CrossRef]
- Sheikh, S.; Sandy, T.; Irani, M.; Jenkins, K. Estimating wastewater treatment emissions using epa’s water9 modeling software. Proc. Water Environ. Fed. 2004, 2004, 125–130. [Google Scholar] [CrossRef]
- Szulczynski, B.; Arminski, K.; Namiesnik, J.; Gebicki, J. Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks. Sensors 2018, 18, 519. [Google Scholar] [CrossRef]
- Nie, E.; Zheng, G.; Ma, C. Characterization of odorous pollution and health risk assessment of volatile organic compound emissions in swine facilities. Atmos. Environ. 2020, 223, 117233. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Zhao, P.; Li, W.; Yan, L.; Piringer, M.; Schauberger, G. Evaluation of the chemical composition and correlation between the calculated and measured odour concentration of odorous gases from a landfill in Beijing, China. Atmos. Environ. 2017, 164, 337–347. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Schmitzer, R.; Kamp, M.; Sowa, A.; Koch, R.; Eckhof, W.; Grimm, E.; Kypke, J.; Hartung, E. Concept to assess the human perception of odour by estimating short-time peak concentrations from one-hour mean values. Reply to a comment by Janicke et al. Atmos. Environ. 2012, 54, 624–628. [Google Scholar] [CrossRef]
- Motalebi Damuchali, A.; Guo, H. Developing an odour emission factor for an oil refinery plant using reverse dispersion modeling. Atmos. Environ. 2020, 222, 117167. [Google Scholar] [CrossRef]
- Han, Z.; Li, R.; Shen, H.; Qi, F.; Liu, B.; Shen, X.; Zhang, L.; Wang, X.; Sun, D. Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant. Environ. Pollut. 2021, 274, 116516. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P.; Il Grande, M. A comparative and critical evaluation of odour assessment methods on a landfill site. Atmos. Environ. 2008, 42, 7050–7058. [Google Scholar] [CrossRef]
- Sharon, S.M.; Alex, H.L.; Patrick, D.O. Odor Thresholds for Chemicals with Established Occupational Health Standards, 3rd ed.; AIHA: Falls Church, VA, USA, 2013; Available online: https://swesiaq.se/onewebmedia/Dokument/ODOR%20THRESHOLDS.pdf (accessed on 18 January 2022).
- Council, N.R. Acute Exposure Guideline Levels for Selected Airborne Chemicals; The National Academies Press: Washington, DC, USA, 2014; Volume 17. [Google Scholar] [CrossRef]
- Nielsen, E.; Ladefoged, O. Evaluation of Health Hazards by Exposure to Ethylbenzene and Proposal of a Health-Based Quality Criterion for Ambient Air; The Danish Environmental Protection Agency: Odense, Denmark, 2013; Available online: https://www2.mst.dk/Udgiv/publications/2013/08/978-87-93026-31-5.pdf (accessed on 10 January 2022).
- Clayton, G.D.; Clayton, F.E. Patty’s Industrial Hygiene and Toxicology: Volume 2A: Toxicology, 3rd ed.; Clayton, G.D., Clayton, F.E., Eds.; John Wiley & Sons: New York, NY, USA, 1981; Volume 2A, p. v-2878. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2919563 (accessed on 20 February 2022).
- Ueno, H.; Amano, S.; Merecka, B.; Kośmider, J. Difference in the odor concentrations measured by the triangle odor bag method and dynamic olfactometry. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2009, 59, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Essa, K.S.M.; Mubarak, F.; Elsaid, S.E.M. Effect of the plume rise and wind speed on extreme value of air pollutant concentration. Meteorol. Atmos. Phys. 2006, 93, 247–253. [Google Scholar] [CrossRef]
- Lateb, M.; Masson, C.; Stathopoulos, T.; Bédard, C. Effect of stack height and exhaust velocity on pollutant dispersion in the wake of a building. Atmos. Environ. 2011, 45, 5150–5163. [Google Scholar] [CrossRef]
- Onbaşıoǧlu, S.U. On the simulation of the plume from stacks of buildings. Build. Environ. 2001, 36, 543–559. [Google Scholar] [CrossRef]
- Giampieri, A.; Ling-Chin, J.; Ma, Z.; Smallbone, A.; Roskilly, A. A review of the current automotive manufacturing practice from an energy perspective. Appl. Energy 2020, 261, 114074. [Google Scholar] [CrossRef]
- Chen, J.; Liu, R.; Gao, Y.; Li, G.; An, T. Preferential purification of oxygenated volatile organic compounds than monoaromatics emitted from paint spray booth and risk attenuation by the integrated decontamination technique. J. Clean. Prod. 2017, 148, 268–275. [Google Scholar] [CrossRef]
- Mathur, A.K.; Majumder, C.B. Biofiltration and kinetic aspects of a biotrickling filter for the removal of paint solvent mixture laden air stream. J. Hazard. Mater. 2008, 152, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Kalis, E.M.; Dewulf, T.; Andrews, K.M. Henry’s Law Constants for Paint Solvents and Their Implications on Volatile Organic Compound Emissions from Automotive Painting. Water Environ. Res. 2000, 72, 65–74. [Google Scholar] [CrossRef]
- Kim, B.; Kalis, E.; Adams, J. Integrated emissions management for automotive painting operations. Pure Appl. Chem. 2001, 73, 1277–1280. [Google Scholar] [CrossRef]
- Gao, M.; Liu, W.; Wang, H.; Shao, X.; Shi, A.; An, X.; Li, G.; Nie, L. Emission factors and characteristics of volatile organic compounds (VOCs) from adhesive application in indoor decoration in China. Sci. Total Environ. 2021, 779, 145169. [Google Scholar] [CrossRef]
- Chen, C.P. Automotive Painting: Achieving a Technological, Economic and Environmental Balance. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995. Available online: http://hdl.handle.net/1721.1/11552 (accessed on 29 August 2022).
- Fatehifar, E.; Kahforoshan, D.; Khazini, L.; Soltanmohammadzadeh, J.; Sattar, H. Estimation of VOC emission from wastewater treatment unit in a petrochemical plant using emission factors. In Mathematics and Computers in Science and Engineering; WOS:000262474400041; EPA: Washington, DC, USA, 2008; pp. 87–193. [Google Scholar]
- Malakar, S.; Saha, P.D. Estimation of VOC Emission in Petroleum Refinery ETP and Comparative Analysis with Measured VOC Emission Rate. IJES 2015, 4, 20–29. Available online: https://www.theijes.com/papers/v4-i10/C0410020029.pdf (accessed on 29 August 2022).
- Cheng, W.H.; Hsu, S.K.; Chou, M.S. Volatile organic compound emissions from wastewater treatment plants in Taiwan: Legal regulations and costs of control. J. Environ. Manag. 2008, 88, 1485–1494. [Google Scholar] [CrossRef]
- Torrens, K.D.; Senske, B.F. Aeration Tank As a Bioscrubber for Odor and VOC Control. In Industrial Wastes (IW) Conference 2007; Water Environment Federation: Alexandria, VA, USA, 2007; pp. 683–694. Available online: https://www.researchgate.net/publication/314558553_Aeration_Tank_As_a_Bioscrubber_for_Odor_and_VOC_Control (accessed on 14 September 2022).
- Mai, H.N.P. Integrated Treatment of Tapioca Processing Industrial Wastewater Based on Environmental Bio-Technology. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2006. Available online: http://www.thailandtapiocastarch.net/download/download-th-48.pdf (accessed on 5 December 2021).
- Mihelcic, J.R.; Baillod, C.R.; Crittenden, J.C.; Rogers, T.N. Estimation of VOC Emissions from Wastewater Facilities by Volatilization and Stripping. Air Waste 1993, 43, 97–105. [Google Scholar] [CrossRef]
- Vigneswaran, S. Waste Water Treatment Technologies; EOLSS Publications: Sydney, Australia, 2009; Volume I, Available online: https://www.google.com/books?hl=th&lr=&id=HQ9xCwAAQBAJ&oi=fnd&pg=PA1&dq=Waste+Water+Treatment+Technologies-Volume+I&ots=c-9kSzLSEx&sig=hoHDdMlLRDZEvl0l8I7OzQNFIO4 (accessed on 19 November 2021).
- Benintendi, R. Modelling and experimental investigation of activated sludge VOCs adsorption and degradation. Process Saf. Environ. Prot. 2016, 101, 108–116. [Google Scholar] [CrossRef]
- Chen, W.S.; Kai, W.; Tsay, L.W.; Kai, J.J. The oxidation behavior of three different zones of welded Incoloy 800H alloy. Nucl. Eng. Des. 2014, 272, 92–98. [Google Scholar] [CrossRef]
- Santos, J.M.; Kreim, V.; Guillot, J.-M.; Reis, N.C., Jr.; de Sá, L.M.; Horan, N.J. An experimental determination of the H2S overall mass transfer coefficient from quiescent surfaces at wastewater treatment plants. Atmos. Environ. 2012, 60, 18–24. [Google Scholar] [CrossRef]
- DiMenna, R.A.; Sandeen, L.R. Determination of biological kinetic constants using respirometry for the water9 air emissions model. Proc. Water Environ. Fed. 2004, 2004, 887–896. [Google Scholar] [CrossRef]
- Tata, P.; Witherspoon, J.; Lue-Hing, C. VOCs Emission from Wastewater Treatment Plant; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Chou, M.-S.; Chang, H.-Y. Bio-Oxidation of Airborne Volatile Organic Compounds in an Activated Sludge Aeration Tank. J. Air Waste Manag. Assoc. 2005, 55, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.J.; Prata, A.A.; Hoinaski, L.; Santos, J.M.; Stuetz, R.M. Sensitivity analysis of the WATER9 model: Emissions of odorous compounds from passive liquid surfaces present in wastewater treatment plants. Water Sci. Technol. 2018, 2017, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-H.; Lu, I.C.; Huang, P.-W.; Wu, Y.-J.; Whang, L.-M. Biological treatment of volatile organic compounds (VOCs)-containing wastewaters from wet scrubbers in semiconductor industry. Chemosphere 2021, 282, 131137. [Google Scholar] [CrossRef] [PubMed]
- Corsi, R.L.; Quigley, C.J.; Melcer, H.; Bell, J. Aromatic voc emissions from a municipal sewer interceptor. Water Sci. Technol. 1995, 31, 137–145. [Google Scholar] [CrossRef]
- EPA. EPA Air Pollution Control Cost Manual; Air Quality Strategies and Standards Division of the Office of Air Quality Planning and Standards, US Environmental Protection Agency: Research Triangle Park, NC, USA, 2002; Volume 27711. Available online: https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution#cost%20manual (accessed on 29 August 2022).
Stack ID | Height (m) | Diameter (m) | Temp. (°C) | Gas Velocity (m/s) | Flow Rate (m3/s) | O2 Rate, Dry Basis (%) | CO2 Rate, Dry Basis (%) | Absolute Stack Pressure (mmHg) |
---|---|---|---|---|---|---|---|---|
BPB_1 | 22 | 0.88 × 0.76 1 | 30 | 11.1 | 7.6 | 21 | <1.0 | 758.3 |
BPB_2 | 22 | 0.88 × 0.76 1 | 30 | 11.0 | 7.6 | 21 | <1.0 | 758.3 |
SB_1 | 18 | 1.40 × 1.40 1 | 28 | 10.1 | 19.8 | 21 | <1.0 | 758.3 |
SB_2 | 18 | 1.40 × 1.40 1 | 28 | 10.3 | 19.8 | 21 | <1.0 | 758.3 |
TPB_1 | 22 | 3.00 × 6.10 1 | 27 | 11.5 | 201.3 | 21 | <1.0 | 758.3 |
TPB_2 | 22 | 3.00 × 6.10 1 | 27 | 11.0 | 201.3 | 21 | <1.0 | 758.3 |
FC | 18 | 1.00 2 | 64 | 10.1 | 8.6 | 20 | <1.0 | 758.3 |
Step | Name of Unit | Number | Open/Close Sump | Shape | Dimension (m) * | Activity |
---|---|---|---|---|---|---|
1 | Raw waste tank (RW) | 1 | Open | Rectangular | 2.8 × 1.1 × 2 | Collection of wastewater |
2 | pH Adjustment tank (PA1) | 2 | Open | Rectangular | 1.2 × 1.2 × 2 and 3 × 3 × 2 | Mixing |
3 | Reaction tank (RA) | 2 | Open | Rectangular | 1.2 × 1.2 × 2 and 3 × 3 × 2 | Mixing |
4 | Flocculation tank (FC) | 2 | Open | Rectangular | 1.2 × 1.2 × 2 and 3 × 3 × 2 | Mixing |
5 | Sedimentation tank (SD1) | 2 | Open | Circle | 8 × 3 and 12 × 3 | Sludge separation |
6 | Holding tank (HD1) | 1 | Open | Rectangular | 6.45 × 4.95 × 2.5 | Gather wastewater |
7 | pH Adjustment tank (PA2) | 2 | Open | Rectangular | 2 × 2 × 2.5 and 2 × 2 × 4 | Mixing |
8 | Aeration tank (AR) | 2 | Open | Rectangular | 15 × 14.5 × 3 | Air blower |
9 | Sedimentation tank (SD2) | 2 | Open | Circle | 12 × 3 and 15 × 3 | Sludge separation |
10 | Holding tank (HD2) | 2 | Open | Rectangular | 4.95 × 6.45 × 2.5 | Collection of wastewater |
11 | Final tank (FN) | 2 | Open | Rectangular | 1.8 × 1.1 × 2 | Collection of wastewater |
12 | Sludge thickener tank (ST) | 2 | Open | Circle | 8 × 3 and 4.5 × 3 | Collection of sludge |
Compound | Odor Character | OTV * | P/M | Cod | Odorant Ranking ** | |
---|---|---|---|---|---|---|
ppm | µg/m3 | µg/m3 | ||||
Acetaldehyde | Ethereal | 0.0015 | 2.7 | 1.060 0.931 | 0.39 0.34 | N |
Dichloromethane | Sweet | 1.2 | 4100 | 0.630 0.557 | 0.01 0.01 | N |
Benzene | Aromatic, sweet, empyreumatic | 0.47 | 1500 | 0.628 0.544 | 0.01 0.01 | N |
Carbon disulfide | Vegetable, sulfide, medicinal | 0.016 | 50 | 24.0 21.1 | 0.48 0.42 | N |
Difluorochloromethane | Ethereal | 200,192 | 7.08 × 108 | 8.05 6.97 | 0.01 0.01 | N |
Methanol | Similar to ethanol | 3.05 | 4000 | 19.4 19.3 | 0.01 0.01 | N |
Ethanol | Chemical odor | 0.09 | 170 | 10.6 9.12 | 0.06 0.05 | N |
Hexane | Gasoline | 0.426 | 1500 | 58.4 51.4 | 0.04 0.03 | N |
Methyl Ethyl Ketone | Sweet, sharp | 0.07 | 210 | 223 222 | 1.06 1.06 | M |
Cyclohexane | Sweet | 0.52 | 1800 | 32.7 29.0 | 0.02 0.02 | N |
1-Butanol | Banana-like, harsh, alcoholic | 0.086 | 260 | 272 235 | 1.05 1.00 | M |
Methyl Isobutyl Ketone | Sweet, sharp | 0.1 | 400 | 414 412 | 1.03 1.03 | M |
Toluene | Sour, burnt | 0.16 | 600 | 674 594 | 1.12 1.00 | H |
Ethyl Benzene | Oily, solvent | 0.092 | 400 | 427 373 | 1.07 1.00 | M |
m,p-Xylene | Sweet, empyreumatic | 0.012 | 52 | 77.5 68.3 | 1.49 1.31 | H |
o-Xylene | Sweet, empyreumatic | 0.012 | 52 | 53.5 47.1 | 1.03 1.00 | M |
1,2,4-Trimethyl Benzene | Aromatic | 0.006 | 30 | 8.68 7.73 | 0.29 0.26 | N |
1,2,3-Trimethyl Benzene | Aromatic | 0.006 | 30 | 3.31 2.96 | 0.11 0.10 | N |
Scenario (SN) | Modification | Percent Reduction | Affected Receptor | |||
---|---|---|---|---|---|---|
Point | Description | Emission from Source | Ground Level Concentration | |||
Physical | A Group of Substances from Stack | |||||
No. 1 | TPB_1: De (reducing from existing) | −0.2 m | Unvaried | ~1.7 | Group a | |
No. 2 | −0.5 m | ~5.8 | ||||
No. 3 | −1 m | ~15.7 | ||||
No. 4 | TPB_1: Height (increasing from existing) | +1 m | Unvaried | ~4.7 | ||
No. 5 | +3 m | ~14.0 | ||||
No. 6 | +5 m | ~24.9 | ||||
A Group of Substances from WWTs | ||||||
No. 7 | RW | covered | ~27.8 | ~27.6 | Group b | |
No. 8 | PA_1 | covered | ~6.5 | ~6.4 | ||
No. 9 | RW and PA_1 | covered | ~35.5 | ~35.5 | ||
No. 10 | Drop from pipe | Dipped in water | ~0.6 | ~0.9 | ||
No. 11 | Drop and RW | Dipped + covered | ~29.0 | ~28.6 | ||
Emission Control | A Group of Substances from Stack Focused on Emissions | |||||
No. 12 | TPB_1 | Reduced Emission | −10% | ~6.6 | Group a | |
No. 13 | −20% | ~13.3 | ||||
No. 14 | −30% | ~19.9 | ||||
No. 15 | −40% | ~26.6 | ||||
No. 16 | −50% | ~33.2 | ||||
No. 17 | TPB_1 and TPB_2 | Reduced Emission | −10% each | ~9.7 | ||
No. 18 | −20% each | ~19.3 | ||||
No. 19 | −30% each | ~29.6 | ||||
No. 20 | −40% each | ~38.6 | ||||
No. 21 | −50% each | ~48.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kultan, V.; Thepanondh, S.; Pinthong, N.; Keawboonchu, J.; Robson, M. Comprehensive Evaluation of Odor-Causing VOCs from the Painting Process of the Automobile Manufacturing Industry and Its Sustainable Management. Atmosphere 2022, 13, 1515. https://doi.org/10.3390/atmos13091515
Kultan V, Thepanondh S, Pinthong N, Keawboonchu J, Robson M. Comprehensive Evaluation of Odor-Causing VOCs from the Painting Process of the Automobile Manufacturing Industry and Its Sustainable Management. Atmosphere. 2022; 13(9):1515. https://doi.org/10.3390/atmos13091515
Chicago/Turabian StyleKultan, Vanitchaya, Sarawut Thepanondh, Nattaporn Pinthong, Jutarat Keawboonchu, and Mark Robson. 2022. "Comprehensive Evaluation of Odor-Causing VOCs from the Painting Process of the Automobile Manufacturing Industry and Its Sustainable Management" Atmosphere 13, no. 9: 1515. https://doi.org/10.3390/atmos13091515
APA StyleKultan, V., Thepanondh, S., Pinthong, N., Keawboonchu, J., & Robson, M. (2022). Comprehensive Evaluation of Odor-Causing VOCs from the Painting Process of the Automobile Manufacturing Industry and Its Sustainable Management. Atmosphere, 13(9), 1515. https://doi.org/10.3390/atmos13091515