The Performance of S2S Models on Predicting the 21.7 Extreme Rainfall Event in Henan China
Abstract
:1. Introduction
2. Data and Methods
3. Result
3.1. Extreme Rainfall Event and Atmospheric Circulations
3.2. Prediction Performance of S2S Models
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y. Monsoons over China. Adv. Atmos. Sci. 1994, 11, 252. [Google Scholar]
- Yu, M.; Liu, Y. The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. Atmos. 2015, 120, 8132–8143. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, Y.; Zhao, P.; Yu, X.; Wang, S.; Kang, H.; Ding, Y. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett. 2013, 40, 1426–1431. [Google Scholar] [CrossRef]
- Bodri, L.; Čermák, V. Prediction of extreme precipitation using a neural network: Application to summer flood occurrence in Moravia. Adv. Eng. Softw. 2000, 31, 311–321. [Google Scholar] [CrossRef]
- Huang, R.; Chen, J.; Wang, L.; Lin, Z. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci. 2012, 29, 910–942. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, K.; Chen, L.; Ren, H.-L.; Wu, Y.; Liu, C. An operational statistical downscaling prediction model of the winter monthly temperature over China based on a multi-model ensemble. Atmos. Res. 2021, 249, 105262. [Google Scholar] [CrossRef]
- Tian, B.Q.; Fan, K. Climate prediction of summer extreme precipitation frequency in the Yangtze River valley based on sea surface temperature in the southern Indian Ocean and ice concentration in the Beaufort Sea. Int. J. Climatol. 2020, 40, 4117–4130. [Google Scholar] [CrossRef]
- Vuillaume, J.F.; Dorji, S.; Komolafe, A.; Herath, S. Sub-seasonal extreme rainfall prediction in the Kelani River basin of Sri Lanka by using self-organizing map classification. Nat. Hazards 2018, 94, 385–404. [Google Scholar] [CrossRef]
- Li, J.; Ding, R. Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogues. Mon. Weather Rev. 2011, 139, 3265–3283. [Google Scholar] [CrossRef]
- Li, J.; Hsu, H.H.; Wang, W.C.; Ha, K.-J.; Li, T.; Kitoh, A. East Asian climate under global warming: Understanding and projection. Clim. Dyn. 2018, 51, 3969–3972. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Jiang, Z.; He, J. Can global warming strengthen the East Asian summer monsoon. J. Clim. 2010, 23, 6696–6705. [Google Scholar] [CrossRef]
- Jiang, F.; Hu, R.; Wang, S.; Zhang, Y.-W.; Tong, L. Trends of precipitation extremes during 1960–2008 in Xinjiang, the Northwest China. Theor. Appl. Climatol. 2013, 111, 133–148. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T.; Dai, A.; Han, Z. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, P.; Zhang, L.; Song, L. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep. 2016, 6, 38506. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Miao, Q.; Wang, J.; Zhang, X. The water vapor transport model at the regional boundary during the Meiyu period. Adv. Atmos. Sci. 2003, 20, 333–342. [Google Scholar] [CrossRef]
- Zhou, T.J.; Yu, R. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. Atmos. 2005, 110, D08104. [Google Scholar] [CrossRef]
- Samel, A.N.; Wang, W.-C.; Zhong, X.-Z. The monsoon rainband over China and relationships with the Eurasian circulation. J. Clim. 1999, 12, 115–131. [Google Scholar] [CrossRef]
- Lu, R. Anomalies in the tropics associated with the heavy rainfall in East Asia during the summer of 1998. Adv. Atmos. Sci. 2000, 17, 205–220. [Google Scholar]
- Chen, Y.; Zhai, P. Two types of typical circulation pattern for persistent extreme precipitation in Central-Eastern China. Q. J. R. Meteorol. Soc. 2013, 140, 1467–1478. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Precursor Circulation Features for Persistent Extreme Precipitation in Central-Eastern China. Weather Forcasting 2014, 29, 226–240. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Z.; Li, Z.; Zhang, P.; Liu, Q.; Nan, Y.; Zhang, J.; Hu, S.; Feng, Y.; Zhao, H. Using CYGNSS Data to Map Flood Inundation during the 2021 Extreme Precipitation in Henan Province, China. Remote Sens. 2021, 13, 5181. [Google Scholar] [CrossRef]
- Ran, L.; Li, S.; Zhou, Y. Observational Analysis of the Dynamic, Thermal, and Water Vapor Characteristics of the “7.20” Extreme Rainstorm Event in Henan Province. Chin. J. Atmos. Sci. 2021, 45, 1366–1383. [Google Scholar]
- Nie, Y.; Sun, J. Moisture Sources and Transport for Extreme Precipitation over Henan in July 2021. Geophys. Res. Lett. 2022, 49, 2021GL097446. [Google Scholar] [CrossRef]
- Yin, J.F.; Gu, H.D.; Liang, X.D. A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. J. Meteor. Res. 2022, 36, 6–25. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric Predictability as Revealed by Naturally Occurring Analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Pegion, K.V.; Kinter, J.L.; Cash, B.A.; Adams, J.M. Sub-seasonal Predictability of the Onset and Demise of the Rainy Season over Monsoonal Regions. Front. Earth Sci. 2017, 5, 14. [Google Scholar] [CrossRef]
- Lin, H.; Mo, R.; Vitart, F.; Stan, C. Eastern Canada Flooding 2017 and its Subseasonal Predictions. Atmosphere-Ocean 2018, 57, 195–207. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Li, L.; Chen, H.; Liu, B.; Xu, C.-Y.; Li, X. Evaluation and Bias Correction of S2S Precipitation for Hydrological Extremes. J. Hydrometeor. 2019, 20, 1887–1906. [Google Scholar] [CrossRef]
- Cowan, T.; Wheeler, M.; Alves, O.; Narsey, S.; de Burgh-Day, C.; Griffiths, M.; Jarvis, C.; Cobon, D.; Hawcroft, M. Forecasting the extreme rainfall, low temperatures, and strong winds associated with the northern Queensland floods of February 2019. Weather Clim. Extrem. 2017, 26, 100232. [Google Scholar] [CrossRef]
- Jie, W.H.; Vitart, F.; Wu, T.W.; Liu, X. Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) database. Q. J. R. Meteorol. Soc. 2017, 143, 2282–2295. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Kousky, V.E.; Higgins, R.W.; Yoo, S.-H.; Liang, J.; Fan, Y. Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system. J. Clim. 2008, 21, 3755–3775. [Google Scholar] [CrossRef]
- Wang, B.; Lee, J.Y.; Kang, I.S.; Shukla, J.; Kig, J.-S.; Kumar, A.; Schemm, J.; Luo, J.-J.; Yamagata, T.; Park, C.-K. How accurately do coupled climate models predict the leading modes of Asian–Australian monsoon interannual variability. Clim. Dyn. 2008, 30, 605–619. [Google Scholar] [CrossRef]
- Lipkus, A.H. A proof of the triangle inequality for the Tanimoto distance. J. Math. Chem. 1999, 26, 263–265. [Google Scholar] [CrossRef]
- Liang, P.; Lin, H. Sub-seasonal prediction over East Asia during boreal summer using the ECCC monthly forecasting system. Clim. Dyn. 2018, 50, 1007–1022. [Google Scholar] [CrossRef]
- Liang, P.; Lin, H.; Ding, Y. Dominant modes of subseasonal variability of east asian summertime surface air temperature and their predictions. J. Clim. 2018, 31, 2729–2743. [Google Scholar] [CrossRef]
- Gong, Z.; Dogar, M.M.A.; Qiao, S.; Hu, P.; Feng, G. Limitations of BCC_CSM’s ability to predict summer precipitation over East Asia and the Northwestern Pacific. Atmos. Res. 2017, 193, 184–191. [Google Scholar] [CrossRef]
- Gong, Z.; Feng, G.; Dogar, M.M.; Huang, G. The Possible Physical Mechanism for the EAP-SR co-action. Clim. Dyn. 2018, 51, 1499–1516. [Google Scholar] [CrossRef]
- Qiao, S.; Chen, D.; Wang, B.; Cheung, H.; Liu, F.; Cheng, J.; Tang, S.; Zhang, Z.; Feng, G.; Dong, W. The Longest 2020 Meiyu Season Over the Past 60 Years: Subseasonal Perspective and Its Predictions. Geophys. Res. Lett. 2021, 48, e2021GL093596. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Li, T. Statistical extended-range (10–30 day) forecast of summer rainfall anomalies over the entire China. Clim. Dyn. 2017, 48, 209–224. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, P.; Li, L.; Ren, H.-L.; Liu, X.; Scaife, A.A.; Zhang, S. Representation and Predictability of the East Asia-Pacific Teleconnection in the Beijing Climate Center and UK Met Office Subseasonal Prediction Systems. J. Meteorol. Res. 2020, 34, 941–964. [Google Scholar] [CrossRef]
- Grubb, M.; Okereke, C.; Arima, J.; Bosetti, V.; Chen, Y.; Edmonds, J.A.; Gupta, S.; Koberle, A.; Kverndokk, S.; Malik, A.; et al. Climate Change 2022: Mitigation of Climate Change. 2022 Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
Model Version | Time Range (Days) | Resolution | Prediction Frequency | |
---|---|---|---|---|
CMA | BCC-CPS-S2Sv2 | 0–60 | T266L56 | 2 times/week (Thursday and Sunday) |
ECMWF | CY47R2 | 0–46 | T639/319L137 | 2 times/week (Monday and Thursday) |
KMA | GloSea6-GC3.2 | 0–60 | N216L85 | daily |
NCEP | NCEP_CFSv2 | 0–44 | T126L64 | daily |
UKMO | GloSea6 | 0–46 | T639/319 L91 | daily |
18 July | 19 July | 20 July | 21 July | 22 July | 18–22 July | |
---|---|---|---|---|---|---|
West | −6.9 | −7.9 | −5.4 | −1.9 | −0.4 | −4.5 |
North | −9.2 | −12.3 | −22.0 | −25.7 | −20.5 | −18.0 |
East | 14.6 | 14.4 | 21.1 | 18.1 | 20.1 | 17.7 |
South | 6.2 | 16.5 | 23.4 | 16.4 | −0.6 | 12.4 |
Net | 4.7 | 10.6 | 17.1 | 7.0 | −1.4 | 8.2 |
Leading Time | 20 Days | 13 Days | 6 Days | 3 Days |
---|---|---|---|---|
CMA | 0.05 | 0.12 | 0.21 | 0.09 |
ECMWF | 0.01 | 0.01 | 0.34 | 0.44 |
KMA | 0.04 | 0.01 | 0.13 | 0.41 |
NCEP | 0.38 | 0.16 | 0.30 | 0.55 |
UKMO | 0.01 | 0.09 | 0.41 | 0.34 |
Leading Time | 20 Days | 13 Days | 6 Days | 3 Days |
---|---|---|---|---|
CMA | 242.66 | 227.96 | 214.35 | 232.43 |
ECMWF | 253.18 | 251.46 | 188.54 | 170.28 |
KMA | 243.52 | 251.16 | 224.82 | 181.52 |
NCEP | 180.55 | 224.16 | 196.15 | 153.54 |
UKMO | 251.87 | 233.80 | 175.50 | 189.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, S.; Liu, L.; Bai, H.; Feng, G. The Performance of S2S Models on Predicting the 21.7 Extreme Rainfall Event in Henan China. Atmosphere 2022, 13, 1516. https://doi.org/10.3390/atmos13091516
Wang X, Li S, Liu L, Bai H, Feng G. The Performance of S2S Models on Predicting the 21.7 Extreme Rainfall Event in Henan China. Atmosphere. 2022; 13(9):1516. https://doi.org/10.3390/atmos13091516
Chicago/Turabian StyleWang, Xiaojuan, Shuai Li, Li Liu, Huimin Bai, and Guolin Feng. 2022. "The Performance of S2S Models on Predicting the 21.7 Extreme Rainfall Event in Henan China" Atmosphere 13, no. 9: 1516. https://doi.org/10.3390/atmos13091516
APA StyleWang, X., Li, S., Liu, L., Bai, H., & Feng, G. (2022). The Performance of S2S Models on Predicting the 21.7 Extreme Rainfall Event in Henan China. Atmosphere, 13(9), 1516. https://doi.org/10.3390/atmos13091516