Highly Efficient Removal of CO2 Using Water-Lean KHCO3/Isopropanol Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- (i)
- Absorption: The CO2 absorption experiments were conducted at a constant laboratory room temperature of 20 °C. A cooling liquid at 5 °C from the thermostatic bath (5) was circulated through the condenser (7) to return vapors to the reactor. A desiccator (4) was used to trap any fugitive water vapor. The simulated flue gas (10 vol % CO2, 10 vol % O2, and 80 vol % N2) with a flow of 500 mL/min was employed for the CO2 absorption. The mixed gas reactor feed percolated into the solution through a muffler, and the outlet gas CO2 concentration was measured to determine the absorption capacity. The absorption step was conducted for 60 min.
- (ii)
- Desorption: The CO2 desorption experiments were performed by heating the solution to 80 °C. A cooling liquid at 5 °C from the thermostatic bath (5) was circulated through the condenser (7) to return the vapors to the reactor. A desiccator (4) was used to trap any fugitive water vapor. A flow of 500 mL/min of N2 was used to carry CO2 gas from the solution, and the pulled gas was analyzed. The desorption step was conducted for 40 min.
- (iii)
- Loading estimation: “” (mmol CO2) is the amount of CO2 absorbed during the entire absorption experiment. It was calculated via the following material balance [31]:
3. Results
3.1. Effects of Different Alcohols on CO2 Absorption and Desorption
3.2. Effects of Different Isopropanol Concentrations on CO2 Removal
4. Material Analysis
4.1. Raman Spectroscopy
4.2. Cyclic Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Asif, Z.; Chen, Z.; Wang, H.; Zhu, Y. Update on air pollution control strategies for coal-fired power plants. Clean Technol. Environ. Policy 2022, 24, 2329–2347. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Duan, Y.; Luebke, D.; Morreale, B. Advances in CO2 capture technology: A patent review. Appl. Energy 2013, 102, 1439–1447. [Google Scholar] [CrossRef]
- Berger, E.; Hahn, M.W.; Przybilla, T.; Winter, B.; Spiecker, E.; Jentys, A.; Lercher, J.A. Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2 capture. J. Energy Chem. 2016, 25, 327–335. [Google Scholar] [CrossRef]
- Khalilpour, R.; Mumford, K.; Zhai, H.; Abbas, A.; Stevens, G.; Rubin, E.S. Membrane-based carbon capture from flue gas: A review. J. Clean. Prod. 2015, 103, 286–300. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Guo, T.; Tian, W.; Hao, J.; Guo, Q. The competitive adsorption mechanism of CO2, H2O and O2 on a solid amine adsorbent. Chem. Eng. J. 2021, 416, 129007. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Hao, J.; Guo, T.; Wang, X.; Xiang, X.; Guo, Q. Amine-Modified Biochar for the Efficient Adsorption of Carbon Dioxide in Flue Gas. Atmosphere 2022, 13, 579. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, G.; Yan, H.; Zhao, Y. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review. Chin. J. Chem. Eng. 2021, 35, 17–43. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Xu, J.-B.; Chang, A.-M.; Bian, L.; Gao, B.; Liu, K.-T. Bi2Fe4O9 submicron-rods synthesized by a low-heating temperature solid state precursor method. J. Alloys Compd. 2013, 562, 64–68. [Google Scholar] [CrossRef]
- Zhao, S.; Feron, P.H.M.; Deng, L.; Favre, E.; Chabanon, E.; Yan, S.; Hou, J.; Chen, V.; Qi, H. Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. J. Membr. Sci. 2016, 511, 180–206. [Google Scholar] [CrossRef]
- Lee, S.C.; Choi, B.Y.; Lee, T.J.; Ryu, C.K.; Ahn, Y.S.; Kim, J.C. CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal. Today 2006, 111, 385–390. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O'Hare, D.; Zhong, Z. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 2014, 7, 3478–3518. [Google Scholar] [CrossRef]
- Han, K.; Ahn, C.K.; Lee, M.S.; Rhee, C.H.; Kim, J.Y.; Chun, H.D. Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. Int. J. Greenh. Gas Control. 2013, 14, 270–281. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, K.; Liang, Z.; Rongwong, W.; Yang, Z.; Idem, R.; Tontiwachwuthikul, P. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing. Fuel 2014, 136, 261–267. [Google Scholar] [CrossRef]
- Oexmann, J.; Kather, A. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. Int. J. Greenh. Gas Control. 2010, 4, 36–43. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Koech, P.K.; Glezakou, V.-A.; Rousseau, R.; Malhotra, D.; Cantu, D.C. Water-Lean Solvents for Post-Combustion CO2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook. Chem. Rev. 2017, 117, 9594–9624. [Google Scholar] [CrossRef]
- Liu, K.T.; Li, J.; Xu, J.B.; Xu, F.L.; Wang, L.; Bian, L. Study on dielectric, optic and magnetic properties of manganese and nickel co-doped bismuth ferrite thin film. J. Mater. Sci. Mater. Electron. 2017, 28, 5609–5614. [Google Scholar] [CrossRef]
- Henni, A.; Mather, A.E. Solubility of carbon dioxide in methyldiethanolamine+ methanol+ water. J. Chem. Eng. Data 1995, 40, 493–495. [Google Scholar] [CrossRef]
- Lai, Q.; Kong, L.; Gong, W.; Russell, A.G.; Fan, M. Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Appl. Energy 2019, 254, 113696. [Google Scholar] [CrossRef]
- Song, J.-H.; Yoon, J.-H.; Lee, H.; Lee, K.-H. Solubility of Carbon Dioxide in Monoethanolamine + Ethylene Glycol + Water and Monoethanolamine + Poly (ethylene glycol) + Water. J. Chem. Eng. Data 1996, 41, 497–499. [Google Scholar] [CrossRef]
- Guo, H.; Li, C.; Shi, X.; Li, H.; Shen, S. Nonaqueous amine-based absorbents for energy efficient CO2 capture. Appl. Energy 2019, 239, 725–734. [Google Scholar] [CrossRef]
- Lin, P.-H.; Wong, D.S.H. Carbon dioxide capture and regeneration with amine/alcohol/water blends. Int. J. Greenh. Gas Control. 2014, 26, 69–75. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Processes 2016, 4, 7. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, J.; Ma, C.; Ren, W.; Wang, L.; Bian, L.; Chang, A. Spontaneous polarization behaviors in hybrid halide perovskite film. Scr. Mater. 2015, 102, 51–54. [Google Scholar] [CrossRef]
- Xue, B.; Yu, Y.; Chen, J.; Luo, X.; Wang, M. A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations. Int. J. Coal Sci. Technol. 2017, 4, 15–24. [Google Scholar] [CrossRef]
- Nagao, M.; Tsugane, S. Cancer in Japan: Prevalence, prevention and the role of heterocyclic amines in human carcinogenesis. Genes Environ. 2016, 38, 16. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Zou, H.; Chu, G.; Shao, L.; Chen, J. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chem. Eng. J. 2009, 145, 377–384. [Google Scholar] [CrossRef]
- Yao, H.; Toan, S.; Huang, L.; Fan, M.; Wang, Y.; Russell, A.G.; Luo, G.; Fei, W. TiO (OH)2—Highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway. Sci. Rep. 2017, 7, 2943. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Du, M.; Dennis, T.J.; Anthony, K.; Perumal, M.J. Reduction of Energy Requirement of CO2 Desorption by Adding Acid into CO2-Loaded Solvent. Energy Fuels 2010, 24, 213–219. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, C.; Sun, J.; Li, W.; Lu, P. Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment. Fuel 2018, 215, 735–743. [Google Scholar] [CrossRef]
- Toan, S.; Lai, Q.; O’Dell, W.; Sun, Z.; Song, H.; Zhao, Y.; Radosz, M.; Adidharma, H.; Russell, C.; Yao, H.; et al. Green, safe, fast, and inexpensive removal of CO2 from aqueous KHCO3 solutions using a nanostructured catalyst TiO (OH)2: A milestone toward truly low-cost CO2 capture that can ease implementation of the Paris Agreement. Nano Energy 2018, 53, 508–512. [Google Scholar] [CrossRef]
- Dutcher, B.; Fan, M.; Leonard, B.; Dyar, M.D.; Tang, J.; Speicher, E.A.; Liu, P.; Zhang, Y. Use of Nanoporous FeOOH as a Catalytic Support for NaHCO3 Decomposition Aimed at Reduction of Energy Requirement of Na2CO3/NaHCO3 Based CO2 Separation Technology. J. Phys. Chem. C 2011, 115, 15532–15544. [Google Scholar] [CrossRef]
- Hamborg, E.S.; van Aken, C.; Versteeg, G.F. The effect of aqueous organic solvents on the dissociation constants and thermodynamic properties of alkanolamines. Fluid Phase Equilibria 2010, 291, 32–39. [Google Scholar] [CrossRef]
- von Harbou, I.; Hoch, S.; Mangalapally, H.P.; Notz, R.; Sieder, G.; Garcia, H.; Spuhl, O.; Hasse, H. Removal of carbon dioxide from flue gases with aqueous MEA solution containing ethanol. Chem. Eng. Processing Process Intensif. 2014, 75, 81–89. [Google Scholar] [CrossRef]
- Iranmahboob, J.; Hill, D.O.; Toghiani, H. Characterization of K2CO3/Co–MoS2 catalyst by XRD, XPS, SEM, and EDS. Appl. Surf. Sci. 2001, 185, 72–78. [Google Scholar] [CrossRef]
KHCO3−H2O−Alcohol Solutions | Solvent Composition (KHCO3, H2O, Alcohol) | Desorbed CO2 (mmol) | Rich Loading (mol CO2/mol KHCO3) | Lean Loading (mol CO2/mol KHCO3) | Maximum Capacity (mol CO2/kg Solvent) |
---|---|---|---|---|---|
KHCO3−H2O | 10 wt %, 90 wt %, 0 wt % | 7.0 × 10−3 | 0.5 | 0.5 | 3.9 × 10−5 |
KHCO3−H2O−MeOH | 10 wt %, 45 wt %, 45 wt % | 2.9 | 0.5 | 4.8 | 1.6 × 10−2 |
KHCO3−H2O−EtOH | 10 wt %, 45 wt %, 45 wt % | 7.0 | 0.5 | 4.6 | 3.9 × 10−2 |
KHCO3−H2O−IPA | 10 wt %, 45 wt %, 45 wt % | 14.9 | 0.5 | 4.2 | 8.3 × 10−2 |
KHCO3−H2O−Butanol | 10 wt %, 45 wt %, 45 wt % | 3.6 × 10−2 | 0.5 | 0.5 | 2.0 × 10−4 |
KHCO3−H2O−Alcohol Solutions | Solvent Composition (KHCO3, H2O, Alcohol) | Desorbed CO2 (mmol) | Rich Loading (mol CO2/mol KHCO3) | Lean Loading (mol CO2/mol KHCO3) | Maximum Capacity (mol CO2/kg solvent) |
---|---|---|---|---|---|
KHCO3−H2O | 10 wt %, 90 wt %, 0 wt % | 7.0 × 10−3 | 0.5 | 0.5 | 3.9×10−5 |
KHCO3−H2O−18 wt % IPA | 10 wt %, 72 wt %, 18 wt % | 2.6 | 0.5 | 4.9 | 1.4×10−2 |
KHCO3−H2O−27 wt % IPA | 10 wt %, 63 wt %, 27 wt % | 4.8 | 0.5 | 4.8 | 2.6×10−2 |
KHCO3−H2O−36 wt % IPA | 10 wt %, 54 wt %, 36 wt % | 15.2 | 0.5 | 4.2 | 8.4×10−2 |
KHCO3−H2O−45 wt % IPA | 10 wt %, 45 wt %, 45 wt % | 14.9 | 0.5 | 4.2 | 8.3×10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Saeed, M.; Luo, J.; Lee, A.; Simonet, R.; Sun, Z.; Walker, N.; Aro, M.; Davis, R.; Zahra, M.A.; et al. Highly Efficient Removal of CO2 Using Water-Lean KHCO3/Isopropanol Solutions. Atmosphere 2022, 13, 1521. https://doi.org/10.3390/atmos13091521
Wang L, Saeed M, Luo J, Lee A, Simonet R, Sun Z, Walker N, Aro M, Davis R, Zahra MA, et al. Highly Efficient Removal of CO2 Using Water-Lean KHCO3/Isopropanol Solutions. Atmosphere. 2022; 13(9):1521. https://doi.org/10.3390/atmos13091521
Chicago/Turabian StyleWang, Lei, Mohammad Saeed, Jianmin Luo, Anna Lee, Rowan Simonet, Zhao Sun, Nigel Walker, Matthew Aro, Richard Davis, Mohammad Abu Zahra, and et al. 2022. "Highly Efficient Removal of CO2 Using Water-Lean KHCO3/Isopropanol Solutions" Atmosphere 13, no. 9: 1521. https://doi.org/10.3390/atmos13091521
APA StyleWang, L., Saeed, M., Luo, J., Lee, A., Simonet, R., Sun, Z., Walker, N., Aro, M., Davis, R., Zahra, M. A., Alkasrawi, M., & Toan, S. (2022). Highly Efficient Removal of CO2 Using Water-Lean KHCO3/Isopropanol Solutions. Atmosphere, 13(9), 1521. https://doi.org/10.3390/atmos13091521