Impact of Radar and Surface Data Assimilation on the Forecast of a Nocturnal Squall Line in the Yangtze–Huaihe River
Abstract
:1. Introduction
2. Data and Methods
2.1. Observation Data
2.1.1. Radar Observation Data
2.1.2. Surface Observation Data
2.1.3. Sounding and Precipitation Observation Data
2.2. Assimilation Method
2.2.1. Data Assimilation System
2.2.2. Radar Data Assimilation Scheme
2.2.3. Surface Data Assimilation Scheme
2.3. Model Configuration and Experimental Design
2.4. Verification Method
3. Case Overview
3.1. Radar Reflectivity
3.2. Environmental Conditions
4. Results
4.1. Impact on the Forecast of the Squall Line
4.1.1. Radar Reflectivity
4.1.2. Precipitation
4.2. Impact on the Forecast of Convection Initiation of the Squall Line
4.2.1. Thermal Conditions
4.2.2. Dynamic Conditions
4.2.3. Water Vapor Conditions
4.3. Impact on the Forecast of Maintenance of the Squall Line
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Shou, S.; Li, S.; Yao, X. Mesoscale Meteorology; China Meteorological Press: Beijing, China, 2009. [Google Scholar]
- Cheng, D.; Shen, T.; Ma, G.; He, D. Advances in the meteorological data assimilation. J. Nanjing Inst. Meteorol. 2004, 27, 550–564. [Google Scholar] [CrossRef]
- Gao, S.; Min, J.; Huang, D. The simulation of a squall line with doppler radar data assimilation using the ensrf method. Chin. J. Atmos. Sci. 2016, 40, 1127–1142. [Google Scholar] [CrossRef]
- Zheng, L.; Qiu, X.; Qian, L. Simulation study of a squall line case based on assimilation radar reflectivity data. Meteorol. Mon. 2019, 45, 73–87. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Zhou, L. Impact of assimilating surface and radar observations on forecasting a squall line with a hybrid data assimilation method: An observation system simulation experiment. J. Lanzhou Univ. Nat. Sci. 2020, 56, 642–649. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Li, H.; Liu, R. Impact of radar data assimilation on a squall line over the yangtze–huaihe river basin with a radar reflectivity operator accounting for ice-phase hydrometeors. Meteorol. Appl. 2021, 28, e1967. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, H.; Yuan, H. Impact of radar data assimilation on a squall line. Chin. J. Atmos. Sci. 2022. [Google Scholar] [CrossRef]
- Hou, T.; Kong, F.; Chen, X.; Lei, H. Impact of 3dvar data assimilation on the prediction of heavy rainfall over southern china. Adv. Meteorol. 2013, 2013, 129642. [Google Scholar] [CrossRef]
- Dong, J.; Xue, M.; Droegemeier, K. The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble kalman filter. Meteorol. Atmos. Phys. 2011, 112, 41–61. [Google Scholar] [CrossRef]
- Cui, X.; Chen, M.; Qin, R.; Han, L. Research advances in the convective initiation mechanisms. Meteorol. Mon. 2021, 47, 1297–1318. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Houze, R.A. Convective initiation near the andes in subtropical south america. Mon. Weather Rev. 2016, 144, 2351–2374. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Hanesiak, J.; Wilson, J.W.; Trier, S.B.; Degelia, S.K.; Gallus, W.A.; Roberts, R.D.; Wang, X. Nocturnal convection initiation during pecan 2015. Bull. Am. Meteorol. Soc. 2019, 100, 2223–2239. [Google Scholar] [CrossRef]
- Groff, F.P.; Adams-Selin, R.D.; Schumacher, R.S. Response of MCS low-frequency gravity waves to vertical wind shear and nocturnal thermodynamic environments. J. Atmospheric Sci. 2021, 78, 3889–3908. [Google Scholar] [CrossRef]
- Bai, H.; Deranadyan, G.; Schumacher, C.; Funk, A.; Epifanio, C.; Ali, A.; Endarwin; Radjab, F.; Adriyanto, R.; Nurhayati, N.; et al. Formation of nocturnal offshore rainfall near the west coast of sumatra: Land breeze or gravity wave? Mon. Weather Rev. 2021, 149, 715–731. [Google Scholar] [CrossRef]
- Parsons, D.B.; Haghi, K.R.; Halbert, K.T.; Elmer, B.; Wang, J. The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the southern great plains. J. Atmos. Sci. 2019, 76, 43–68. [Google Scholar] [CrossRef]
- Haghi, K.R.; Geerts, B.; Chipilski, H.G.; Johnson, A.; Degelia, S.; Imy, D.; Parsons, D.B.; Adams-Selin, R.D.; Turner, D.D.; Wang, X. Bore-ing into nocturnal convection. Bull. Am. Meteorol. Soc. 2019, 100, 1103–1121. [Google Scholar] [CrossRef]
- Geerts, B.; Parsons, D.; Ziegler, C.L.; Weckwerth, T.M.; Biggerstaff, M.I.; Clark, R.D.; Coniglio, M.C.; Demoz, B.B.; Ferrare, R.A.; Gallus, W.A.; et al. The 2015 plains elevated convection at night field project. Bull. Am. Meteorol. Soc. 2017, 98, 767–786. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Romatschke, U. Where, when, and why did it rain during PECAN? Mon. Weather Rev. 2019, 147, 3557–3573. [Google Scholar] [CrossRef]
- Degelia, S.K.; Wang, X.; Stensrud, D.J.; Johnson, A. Understanding the impact of radar and in situ observations on the prediction of a nocturnal convection initiation event on 25 june 2013 using an ensemble-based multiscale data assimilation system. Mon. Weather Rev. 2018, 146, 1837–1859. [Google Scholar] [CrossRef]
- Xue, M. Preface to the special issue on the “observation, prediction and analysis of severe convection of china” (opacc) national “973” project. Adv. Atmos. Sci. 2016, 33, 1099–1101. [Google Scholar] [CrossRef]
- Helmus, J.; Collis, S. The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the python programmingl. J. Open Res. Softw. 2016, 4, e25. [Google Scholar] [CrossRef]
- Bao, X.; Wu, D.; Lei, X.; Ma, L.; Wang, D.; Zhao, K.; Jou, B.J.-D. Improving the extreme rainfall forecast of Typhoon Morakot (2009) by assimilating radar data from Taiwan Island and mainland China. J. Meteorol. Res. 2017, 31, 747–766. [Google Scholar] [CrossRef]
- Jiyang, T.; Ronghua, L.; Liuqian, D.; Liang, G.; Bingyu, Z. Typhoon rainstorm simulations with radar data assimilation on the southeast coast of China. Nat. Hazards Earth Syst. Sci. 2021, 21, 723–742. [Google Scholar] [CrossRef]
- Lin, E.; Yang, Y.; Qiu, X.; Xie, Q.; Gan, R.; Zhang, B.; Liu, X. Impacts of the radar data assimilation frequency and large-scale constraint on the short-term precipitation forecast of a severe convection case. Atmos. Res. 2021, 257, 105590. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; NCAR: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Tong, W.; Zhang, Y.; Lin, C.-Y.; Xu, D. Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Weather Rev. 2016, 144, 149–169. [Google Scholar] [CrossRef]
- Li, X.; Zeng, M.; Wang, Y.; Wang, W.; Wu, H.; Mei, H. Evaluation of two momentum control variable schemes and their impact on the variational assimilation of radarwind data: Case study of a squall line. Adv. Atmos. Sci. 2016, 33, 1143–1157. [Google Scholar] [CrossRef]
- Shen, F.; Min, J.; Li, H.; Xu, D.; Shu, A.; Zhai, D.; Guo, Y.; Song, L. Applications of radar data assimilation with hydrometeor control variables within the wrfda on the prediction of landfalling hurricane ike (2008). Atmosphere 2021, 12, 853. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint. Part I: Model development and dimulated data experiments. J. Atmos. Sci. 1997, 54, 1642–1661. [Google Scholar] [CrossRef]
- Tong, M.; Xue, M. Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Weather Rev. 2005, 133, 1789–1807. [Google Scholar] [CrossRef]
- Ruggiero, F.H.; Sashegyi, K.D.; Madala, R.V.; Raman, S. The use of surface observations in four-dimensional data assimilation using a mesoscale model. Mon. Weather Rev. 1996, 124, 1018–1033. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Lim, K.-S.S.; Hong, S.-Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (ccn) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Fei, C.; Jimy, D. Coupling an advanced land surface–hydrology model with the penn state–ncar mm5 modeling system. part i: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 17. [Google Scholar]
- Kain, J.S.; Fritsch, J.M. Convective Parameterization for Mesoscale Models: The Kain-Fritsch Scheme. In The Representation of Cumulus Convection in Numerical Models; Emanuel, K.A., Raymond, D.J., Eds.; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1993; pp. 165–170. ISBN 978-1-935704-13-3. [Google Scholar]
- He, Z.; Zhang, Q.; Zhao, K.; Hu, H. Initiation and evolution of elevated convection in a nocturnal squall line along the meiyu front. J. Geophys. Res. Atmos. 2018, 123, 7292–7310. [Google Scholar] [CrossRef]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef]
- Chen, I.-H.; Hong, J.-S.; Tsai, Y.-T.; Fong, C.-T. Improving afternoon thunderstorm prediction over Taiwan through 3DVar-based radar and surface data assimilation. Weather Forecast. 2020, 35, 2603–2620. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Degelia, S. Design and implementation of a gsi-based convection-allowing ensemble-based data assimilation and forecast system for the pecan field experiment. part ii: Overview and evaluation of a real-time system. Weather Forecast. 2017, 32, 1227–1251. [Google Scholar] [CrossRef]
Observation | |||
---|---|---|---|
Yes | No | ||
Forecast | Yes | Hits | False alarms |
No | Misses | Correct rejections |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Zhang, S.; Zhang, W. Impact of Radar and Surface Data Assimilation on the Forecast of a Nocturnal Squall Line in the Yangtze–Huaihe River. Atmosphere 2022, 13, 1522. https://doi.org/10.3390/atmos13091522
Pan Z, Zhang S, Zhang W. Impact of Radar and Surface Data Assimilation on the Forecast of a Nocturnal Squall Line in the Yangtze–Huaihe River. Atmosphere. 2022; 13(9):1522. https://doi.org/10.3390/atmos13091522
Chicago/Turabian StylePan, Zongmei, Shuwen Zhang, and Weidong Zhang. 2022. "Impact of Radar and Surface Data Assimilation on the Forecast of a Nocturnal Squall Line in the Yangtze–Huaihe River" Atmosphere 13, no. 9: 1522. https://doi.org/10.3390/atmos13091522
APA StylePan, Z., Zhang, S., & Zhang, W. (2022). Impact of Radar and Surface Data Assimilation on the Forecast of a Nocturnal Squall Line in the Yangtze–Huaihe River. Atmosphere, 13(9), 1522. https://doi.org/10.3390/atmos13091522