An Experimental Method for Evaluating Ammonia Emission Rates of Bio-Curtain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Swine Facility and the Curtain
2.2. Enclosing Ability of Metallic Cover
2.3. Ammonia-Reducing Effect of Curtain
2.4. Chemical Properties of Sprayed Water
2.5. Data Analysis
3. Results and Discussion
3.1. Enclosing Ability of Metallic Cover
3.2. Ammonia Reduction Effects in Non-Spraying Condition
3.3. Ammonia Reduction Effect of Spraying Treatment Inside the Curtain
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merchant, J.A.; Ross, R.F.; Hodne, C. Iowa Concentrated Animal Feeding Operations Air Quality Study; Iowa State University and The University of Iowa: Ames. 2002. Available online: https://www.oregonlegislature.gov/citizen_engagement/Reports/2011_DEQ_Dairy%20Air%20Quality%20Task%20Force%20Appendix%20L%20Iowa%20CAFO%20study.pdf (accessed on 23 February 2022).
- Thu, K.; Donham, K.; Ziegenhorn, R.; Reynolds, S.; Thorne, P.S.; Subramanian, P.; Whitten, J. A Control Study of the Physical and Mental Health of Residents Living near a Large-Scale Swine Operation. J. Agric. Saf. Health 1997, 3, 13–26. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Miller, E.A.; Suggs, M.S.; Graham, B.G. The Effect of Environmental Odors Emanating from Commercial Swine Operations on the Mood of Nearby Residents. Brain Res. Bull. 1995, 37, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thurston, R.V. Aqueous Ammonia Equilibrium Calculations: Effect of PH and Temperature. J. Fish. Res. Board Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Lyu, C.; Li, N.; Li, M.; Lyu, Y.; Liu, Z.; Zhong, S. Efficiency of the Integrated Nitrogen Removal Device to Remove Ammonia in a Hog House. J. Chem. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Ko, H.-J.; Kim, H.-T.; Kim, Y.-S.; Roh, Y.-M.; Lee, C.-M.; Kim, C.-N. Odor Reduction Rate in the Confinement Pig Building by Spraying Various Additives. Bioresour. Technol. 2008, 99, 8464–8469. [Google Scholar] [CrossRef]
- Wachenfelt, E.V. Dust Reduction in Alternative Production Systems for Laying Hens. In International Symposium on Dust Control in Animal Production Facilities: Congress Proceedings; Department of Agricultural Engineering: Aarhus, Denmark, 1999; p. 349. [Google Scholar]
- Moore, P.A., Jr.; Li, H.; Burns, R.; Miles, D.; Maguire, R.; Ogejo, J.; Reiter, M.S.; Buser, M.D.; Trabue, S. Development and Testing of the ARS Air Scrubber: A Device for Reducing Ammonia Emissions from Animal Rearing Facilities. Front. Sustain. Food Syst. 2018, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs; 2017, Volume 11, 898. Available online: http://eippcb.jrc.ec.europa.eu/reference/ (accessed on 10 October 2022).
- Ellis, M.; Funk, T.; Zhang, Y.; Peterson, B.; Rojo-Gomez, A.; Jerez, S.; Su, J.; Robert, M. Evaluation of the Effectiveness of a BEI Biocurtain and Electrostatic Space Charge System for Reducing Emissions of Total Suspended Particulate Matter from Swine Building Exhaust Streams; The University of Illinois: Champaign, IL, USA, 2008; Available online: https://porkcheckoff.org/wp-content/uploads/2021/02/05-132-ELLIS-UofILREVISED.pdf (accessed on 23 February 2022).
- Sommer, S.G.; Hafner, S.D.; Laubach, J.; van der Weerden, T.J.; Leytem, A.B.; Pacholski, A. Model for Calculating Ammonia Emission from Stored Animal Liquid Manure. Biosyst. Eng. 2022, 223, 41–55. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia Emissions from Agriculture and Their Contribution to Fine Particulate Matter: A Review of Implications for Human Health. J. Environ. Manage. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.W.; Heber, A.J.; Robarge, W.P.; Classen, J.J. Ammonia Emissions from Animal Feeding Operations; ASABE: St. Joseph, MI, USA, 2006. [Google Scholar]
- Hwang, O.H.; Cho, S.B.; Han, D.W.; Lee, S.R.; Kwag, J.H.; Park, S.K. Effect of Storage Period on the Changes of Odorous Compound Concentrations and Bacterial Ecology for Identifying the Cause of Odor Production from Pig Slurry. PLoS ONE 2016, 11, e0162714. [Google Scholar] [CrossRef] [Green Version]
- Banhazi, T.M. Seasonal, Diurnal and Spatial Variations of Environmental Variables in Australian Livestock Buildings. Aust. J. Multi-Discip. Eng. 2013, 10, 60–69. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Wagemans, M.J.M. Ammonia Volatilization and Dust Concentration as Affected by Ventilation Systems in Houses for Fattening Pigs. Trans. ASAE 1997, 40, 1161–1170. [Google Scholar] [CrossRef]
- KARSE (Korean Association of Air Conditioning Refrigerating and Sanitary Engineers). The Test Code for Leakage of HVAC (Heating, Ventilating and Air Conditioning) Air Duct, SPS-KARSE B 0016-0178; KARSE: Seoul, Republic of Korea, 2018; p. 5. [Google Scholar]
- Moody, L.; Li, H.; Burns, R.; Xin, H.; Gates, R. Quality Assurance Project Plan (QAPP) for Monitoring Gaseous and Particulate Matter Emissions from Southeastern Broiler Houses. In Symposium on Air Quality Measurement: Methods and Technology; The American Society of Agricultural and Biological Engineer: Michigan, USA, 2006; pp. 470–481. [Google Scholar]
- Yeo, U.-H.; Decano-Valentin, C.; Ha, T.; Lee, I.-B.; Kim, R.-W.; Lee, S.-Y.; Kim, J.-G. Impact Analysis of Environmental Conditions on Odour Dispersion Emitted from Pig House with Complex Terrain Using CFD. Agronomy 2020, 10, 1828. [Google Scholar] [CrossRef]
- Ajami, A.; Shah, S.B.; Stikeleather, L.F. Windbreak Wall-Vegetative Strip System to Reduce Air Emissions from Mechanically-Ventilated Livestock Barns—Part 1: CFD Modeling. Water Air Soil Pollut. 2019, 230, 291. [Google Scholar] [CrossRef]
- Ocepek, M.; Berk, P.; Rakun, J.; Janzekovic, M.; Skorjanc, D. Diurnal Variation of Ammonia Emission in Pig Fattening Facilities. In DAAAM International Scientific Book 2012; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2012; Chapter 10; pp. 107–116. ISBN 978-3-901509-86-5. ISSN 1726-9687. [Google Scholar] [CrossRef]
- Manuzon, R.B.; Zhao, L.Y.; Keener, H.M.; Darr, M.J. A Prototype Acid Spray Scrubber for Absorbing Ammonia Emissions from Exhaust Fans of Animal Buildings. Trans. ASABE 2007, 50, 1395–1407. [Google Scholar] [CrossRef]
- Ajami, A.; Shah, S.B.; Wang-Li, L.; Kolar, P.; Castillo, M.S. Windbreak Wall-Vegetative Strip System to Reduce Air Emissions from Mechanically Ventilated Livestock Barns: Part 2—Swine House Evaluation. Water Air Soil Pollut. 2019, 230, 12. [Google Scholar] [CrossRef]
- Snoek, D.J.W.; Stigter, J.D.; Ogink, N.W.M.; Groot Koerkamp, P.W.G. Sensitivity Analysis of Mechanistic Models for Estimating Ammonia Emission from Dairy Cow Urine Puddles. Biosyst. Eng. 2014, 121, 12–24. [Google Scholar] [CrossRef]
- Li, R. Effect of partial pit exhaust ventilation system on ammonia removal ratio and mass transfer coefficients from different emission sources in pig houses. Energy Built Environ. 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Cabaraux, J.-F.; Nicks, B. Ammonia Emissions from Pig Houses: Influencing Factors and Mitigation Techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.W.; Heber, A.J. A Review of Ammonia Emissions from Confined Swine Feeding Operations. Trans. ASAE 2003, 46, 3. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Petz, E. Diurnal and Annual Variation of Odour Emission from Animal Houses: A Model Calculation for Fattening Pigs. J. Agric. Eng. Res. 1999, 74, 251–259. [Google Scholar] [CrossRef]
- Wang, K.; Wei, B.; Zhu, S.; Ye, Z. Ammonia and Odour Emitted from Deep Litter and Fully Slatted Floor Systems for Growing-Finishing Pigs. Biosyst. Eng. 2011, 109, 203–210. [Google Scholar] [CrossRef]
- Palakodeti, A.; Azman, S.; Rossi, B.; Dewil, R.; Appels, L. A Critical Review of Ammonia Recovery from Anaerobic Digestate of Organic Wastes via Stripping. Renew. Sustain. Energy Rev. 2021, 143, 110903. [Google Scholar] [CrossRef]
- Zheng, J.; Lyu, Y.; Qiao, M.; Wang, R.; Zhou, Y.; Li, H.; Chen, C.; Li, Y.; Zhou, H.; Jiang, S.P.; et al. Photoelectrochemical Synthesis of Ammonia on the Aerophilic-Hydrophilic Heterostructure with 37.8% Efficiency. Chem 2019, 5, 617–633. [Google Scholar] [CrossRef] [Green Version]
- Mackay, D.; Yeun, A.T.K. Mass Transfer Coefficient Correlations for Volatilization of Organic Solutes from Water. Environ. Sci. Technol. 1983, 17, 211–217. [Google Scholar] [CrossRef]
- Arogo, J.; Zhang, R.H.; Riskowski, G.L.; Christianson, L.L.; Day, D.L. Mass transfer coefficient of ammonia in liquid swine manure and aqueous solutions. J. Agric. Eng. Res. 1999, 73, 77–86. [Google Scholar] [CrossRef]
- Bjerg, B.; Cascone, G.; Lee, I.B.; Thomas, B.; Norton, T.; Hong, S.W.; Seo, I.H.; Banhazi, T.; Liberati, P.; Marucci, A.; et al. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosyst. Eng. 2013, 6, 259–275. [Google Scholar] [CrossRef]
- Jerez, S.B.; Mukhtar, S.; Faulkner, W.; Casey, K.D.; Borhan, M.S.; Smith, R.A. Evaluation of Electrostatic Particle Ionization and BioCurtainTM Technologies to Reduce Air Pollutants from Broiler Houses. Appl. Eng. Agric. 2013, 29, 975–984. [Google Scholar] [CrossRef]
- Jo, G.; Ha, T.; Jang, Y.A.; Hwang, O.; Seo, S.; Woo, S.E.; Lee, S.; Kim, D.; Jung, D. Ammonia emission characteristics of a mechanically ventilated swine finishing facility in Korea. Atmosphere 2020, 11, 1088. [Google Scholar] [CrossRef]
- Jamaludin, Z.; Rollings-Scattergood, S.; Lutes, K.; Vaneeckhaute, C. Evaluation of Sustainable Scrubbing Agents for Ammonia Recovery from Anaerobic Digestate. Bioresour. Technol. 2018, 270, 596–602. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ma, J.; Waite, T.D. The Impact of Absorbents on Ammonia Recovery in a Capacitive Membrane Stripping System. Chem. Eng. J. 2020, 382, 122851. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Evaluation of Different Capture Solutions for Ammonia Recovery in Suspended Gas Permeable Membrane Systems. Membranes 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Provolo, G.; Martínez-Suller, L. In Situ Determination of Slurry Nutrient Content by Electrical Conductivity. Bioresour. Technol. 2007, 98, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Yagüe, M.R.; Quílez, D. On-Farm Measurement of Electrical Conductivity for the Estimation of Ammonium Nitrogen Concentration in Pig Slurry. J. Environ. Qual. 2012, 41, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Damtie, M.M.; Volpin, F.; Yao, M.; Tijing, L.D.; Hailemariam, R.H.; Bao, T.; Park, K.-D.; Shon, H.K.; Choi, J.-S. Ammonia Recovery from Human Urine as Liquid Fertilizers in Hollow Fiber Membrane Contactor: Effects of Permeate Chemistry. Environ. Eng. Res. 2020, 26, 1. [Google Scholar] [CrossRef]
- Leek, A.B.G.; Hayes, E.T.; Curran, T.P.; Callan, J.J.; Beattie, V.E.; Dodd, V.A.; O’Doherty, J.V. The Influence of Manure Composition on Emissions of Odour and Ammonia from Finishing Pigs Fed Different Concentrations of Dietary Crude Protein. Bioresour. Technol. 2007, 98, 3431–3439. [Google Scholar] [CrossRef]
- Haeussermann, A.; Jungbluth, T.; Hartung, E. NH3 mission from Pig Husbandry in Relation to Ventilation Control and Indoor Air Cooling. In Workshop on Agricultural Air Quality; Department of Communication Services, North Carolina State University: North Carolina, CA, USA, 2006; pp. 657–664. [Google Scholar]
- Cortus, E.L.; Lemay, S.P.; Barber, E.M.; Hill, G.A.; Godbout, S. A dynamic model of ammonia emission from urine puddles. Biosyst. Eng. 2008, 99, 390–402. [Google Scholar] [CrossRef]
- Ashtari, A.K.; Majd, A.M.S.; Riskowski, G.L.; Mukhtar, S.; Zhao, L. Removing Ammonia from Air with a Constant PH, Slightly Acidic Water Spray Wet Scrubber Using Recycled Scrubbing Solution. Front. Environ. Sci. Eng. 2016, 10, 3. [Google Scholar] [CrossRef]
- Melse, R.W.; Ploegaert, J.P.M.; Ogink, N.W.M. Biotrickling Filter for the Treatment of Exhaust Air from a Pig Rearing Building: Ammonia Removal Performance and Its Fluctuations. Biosyst. Eng. 2012, 113, 242–252. [Google Scholar] [CrossRef]
- Van Geelen, M.A.; Van Der Hoek, K.W. Odour Control with Biological Air Washers. Agric. Environ. 1977, 3, 217–222. [Google Scholar] [CrossRef]
- Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production. Open Agric. J. 2009, 3, 6–12. [Google Scholar] [CrossRef]
Source | pH | EC (mS/cm) | TKN (mg/L) | NH4+ (mg/L) |
---|---|---|---|---|
Tank | 7.3 ± 0.02 | 99.7 ± 0.6 | 0.005 ± 0.02 | 0.0 ± 2.1 |
Surface of curtain | 7.4 ± 0.04 | 1252.7 ± 0.6 | 0.026 ± 0.10 | 47.0 ± 0.7 |
Floor of the curtain | 7.6 ± 0.03 | 994.7 ± 0.6 | 0.051 ± 0.02 | 60.5 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halder, J.N.; Park, J.S.; Park, S.Y.; Kwon, K.S.; Hwang, O.H. An Experimental Method for Evaluating Ammonia Emission Rates of Bio-Curtain. Atmosphere 2023, 14, 127. https://doi.org/10.3390/atmos14010127
Halder JN, Park JS, Park SY, Kwon KS, Hwang OH. An Experimental Method for Evaluating Ammonia Emission Rates of Bio-Curtain. Atmosphere. 2023; 14(1):127. https://doi.org/10.3390/atmos14010127
Chicago/Turabian StyleHalder, Joshua Nizel, Jun Su Park, So Yean Park, Kyeong Seok Kwon, and Ok Hwa Hwang. 2023. "An Experimental Method for Evaluating Ammonia Emission Rates of Bio-Curtain" Atmosphere 14, no. 1: 127. https://doi.org/10.3390/atmos14010127
APA StyleHalder, J. N., Park, J. S., Park, S. Y., Kwon, K. S., & Hwang, O. H. (2023). An Experimental Method for Evaluating Ammonia Emission Rates of Bio-Curtain. Atmosphere, 14(1), 127. https://doi.org/10.3390/atmos14010127