Emission Characteristics of Fine Particles in Relation to Precursor Gases in Agricultural Emission Sources: A Case Study of Dairy Barns
Abstract
:1. Introduction
2. Experimental Methods
2.1. Monitoring Site
2.2. Measurement Instruments
2.3. Sampling and Data Acquisition
2.4. Data Processing
3. Result and Discussion
3.1. Summary of Measurement Data
3.2. Diurnal Patterns of Fine Particles and Gaseous Pollutant Concentrations
3.3. Diurnal Profiles of Fine Particles and Gaseous Compound Concentrations, Emission Rates, and Loading Rates
3.4. Correlation Analyses between Fine Particles and Gaseous Compounds
3.5. Multivariate Linear Regressions between PM2.5 and Its Precursor Gases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AFOs | Animal feeding operations |
AmbPM2.5 | Ambient PM2.5 loading rate |
AmbRH | Ambient relative humidity |
AmbSolar | Ambient solar irradiation |
AmbT | Ambient temperature |
AmbWV | Ambient wind velocity |
AU | Animal unit |
B | Coefficients for independent variables |
BarnAct | Animal activity in barn |
BarnNH3 | NH3 emission rate from barn |
BarnNO2 | NO2 emission rate from barn |
BarnPM2.5 | PM2.5 emission rate from barn |
BarnRH | Relative humidity in barn |
BarnSO2 | SO2 emission rate from barn |
BarnT | Temperature in barn |
CO(NH2)2 | Urea |
DAC | Data acquisition and control |
EC | Elemental carbon |
g/cow/h | Gram per cow per hour (cow·h) |
GSS | Gas sampling system |
H2S | Hydrogen sulfide |
H2SO4 | Sulfuric acid |
HNO3 | Nitric acid |
HONO | Nitrous acid |
IQR | Interquartile range |
LDL | Lower detection limit |
μg/m3/min | Microgram per m3 minute (m3·minute) |
NH3 | Ammonia |
NH4+ | Ammonium ion |
NO3− | Nitrate ion |
NOx | Nitric oxides |
OC | Organic carbon |
OFIS | On-farm instrument shelter |
PBL | Planetary boundary layer |
PCA | Principal component analysis |
PM | Particulate matter |
PM2.5 | Fine particles with an aerodynamic diameter of less than 2.5 micron |
SD | Standard deviation |
SLs | Sampling locations |
SO2 | Sulfur dioxide |
SO42− | Sulfate ion |
T | Coefficient divided by standard error |
VOCs | Volatile organic compounds |
References
- Zhao, X.; Zhang, X.; Xu, X.; Xu, J.; Meng, W.; Pu, W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- Wang-Li, L. Insights to the formation of secondary inorganic PM2.5: Current knowledge and future needs. Int. J. Agric. Biol. Eng. 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Pozzer, A.; Tsimpidi, A.P.; Karydis, V.A.; de Meij, A.; Lelieveld, J. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 2017, 17, 12813–12826. [Google Scholar] [CrossRef] [Green Version]
- Foy, B.D.; Schauer, J.J. Changes in speciated PM2.5 concentrations in Fresno, California, due to NOx reductions and variations in diurnal emission profiles by day of week. Sci. Anth. 2019, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Hodan, W.M.; Barnard, W.R. Evaluating the Contribution of PM2.5 Precursor Gases and Re-Entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions; MACTEC: Research Triangle Park, NC, USA, 2004. Available online: http://www3.epa.gov/ttnchie1/conference/ei13/mobile/hodan.pdf (accessed on 11 December 2017).
- Choi, S.Y.; Park, S.W.; Byun, Y.J.; Han, Y.J. Characteristics of locally occurring high PM2.5 concentration episodes in a small city in South Korea. Atmosphere 2021, 12, 86. [Google Scholar] [CrossRef]
- Wang, S.; Xing, J.; Jang, C.; Zhu, Y.; Fu, J.S.; Hao, J. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modelling. Environ. Sci. Technol. 2011, 45, 9293–9300. [Google Scholar] [CrossRef]
- Hristov, A.N. Technical note: Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J. Dairy Sci. 2011, 94, 3130–3136. [Google Scholar] [CrossRef]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.F.; Wang-Li, L.; Shah, S.B.; Jayanty, R.K.M.; Bloomfield, P. Ammonia concentrations and modeling of inorganic particulate matter in the vicinity of an egg production facility in Southeastern USA. Environ. Sci. Pollut. Res. 2014, 21, 4675–4685. [Google Scholar] [CrossRef]
- Liang, D.; Ma, X.; Zhang, J.; Liu, Z.; Wu, J.; Feng, Y.; Zhang, Y. Chemical analysis of particulate matter in the harvest period in an agricultural region of eastern China. Aerosol Air Qual. Res. 2017, 17, 2381–2389. [Google Scholar] [CrossRef]
- Ye, Z.; Guo, X.; Cheng, L.; Cheng, S.; Chen, D.; Wang, W.; Liu, B. Reducing PM2.5 and secondary inorganic aerosols by agricultural ammonia emission mitigation within the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2019, 219, 116989. [Google Scholar] [CrossRef]
- Dai, P.; Shen, D.; Tang, Q.; Huang, K.; Li, C. PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis. Environ. Pollut. 2020, 256, 113368. [Google Scholar] [CrossRef]
- Meng, Z.; Wu, L.; Xu, X.; Xu, W.; Zhang, R.; Jia, X.; Liang, L.; Miao, Y.; Cheng, H.; Xie, Y.; et al. Changes in ammonia and its effects on PM2.5 chemical property in three winter seasons in Beijing, China. Sci. Total Environ. 2020, 749, 142208. [Google Scholar] [CrossRef]
- Cheng, B.; Wang-Li, L. Responses of Secondary Inorganic PM2.5 to precursor gases in an ammonia abundant area in North Carolina. Aerosol Air Qual. Res. 2019, 19, 1126–1138. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Effects of agriculture upon the air quality and climate: Research, policy, and regulations. Environ. Sci. Technol. 2009, 43, 4234–4240. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Pan, Y.; Zhang, Z.; Zeng, Y. Kinetic determination of urease activity in fresh pig feces and slurry and the effect on ammonia production at different conditions. Sustainability 2019, 11, 6396. [Google Scholar] [CrossRef] [Green Version]
- Joo, H.S.; Hirai, M.; Shoda, M. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Res. 2006, 40, 3029–3036. [Google Scholar] [CrossRef]
- Li, Q.F.; Wang-Li, L.; Liu, Z.; Jayanty, R.K.M.; Shah, S.B.; Bloomfield, P. Major ionic compositions of fine particulate matter in an animal feeding operation facility and its vicinity. J. Air Waste Manag. Assoc. 2014, 64, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Feilberg, A.; Hansen, M.J.; Liu, D.; Nyord, T. Contribution of livestock H2S to total sulfur emissions in a region with intensive animal production. Nat. Commun. 2017, 8, 1069. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Air Quality Criteria for Particulate Matter; EPA (United States Environmental Protection Agency): Washington, DC, USA, 2004; Volume I.
- Wang, Y.; Niu, B.; Ni, J.Q.; Xue, W.; Zhu, Z.; Li, X.; Zou, G. New insights into concentrations, sources and transformations of NH3, NOx, SO2 and PM at a commercial manure-belt layer house. Environ. Pollut. 2020, 262, 114355. [Google Scholar] [CrossRef]
- Joo, H.S.; Park, K.; Lee, K.; Ndegwa, P.M. Mass concentration coupled with mass loading rate for evaluating PM2.5 pollution status in the atmosphere: A case study based on dairy barns. Environ. Pollut. 2015, 207, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cui, K.; Yu, Y.T.; Chao, H.R.; Hsu, Y.C.; Lu, I.C.; Arcega, R.D.; Tsai, M.H.; Lin, S.L.; Chao, W.C.; et al. A big data analysis of PM2.5 and PM10 from low cost air quality sensors near traffic areas. Aerosol Air Qual. Res. 2019, 19, 1721–1733. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.; ApSimon, H.; Carruthers, D.; Carslaw, D.; Derwent, D.; Harrison, R.; Laxen, D.; Stedman, J. Fine Particulate Matter (PM2.5) in the United Kingdom, Department for Environment, Food and Rural Affairs. 2012. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1212141150_AQEG_Fine_Particulate_Matter_in_the_UK.pdf (accessed on 20 August 2020).
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Hong, J.W.; Lee, K.; Hong, J.; Velasco, E.; Lim, Y.J.; Lee, J.B.; Nam, K.; Park, J. Ceilometer monitoring of boundary-layer height and its application in evaluating the dilution effect on air pollution. Bound-Layer Meteorol. 2019, 172, 435–455. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.Q.; Heber, A.J. An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 2010, 71, 38–49. [Google Scholar] [CrossRef]
- Joo, H.S.; Ndegwa, P.M.; Heber, A.J.; Ni, J.Q.; Bogan, B.W.; Cortus, E.L.; Ramirez-Dorronsoro, J.C. A direct method of measuring gaseous emissions from naturally ventilated dairy barns. Atmos. Environ. 2014, 86, 176–186. [Google Scholar] [CrossRef]
- Joo, H.S.; Ndegwa, P.M.; Heber, A.J.; Ni, J.Q.; Bogan, B.W.; Ramirez-Dorronsoro, J.C.; Cortus, E.L. Particulate matter dynamics in naturally ventilated freestall dairy barns. Atmos. Environ. 2013, 69, 182–190. [Google Scholar] [CrossRef]
- Joo, H.S.; Ndegwa, P.M.; Heber, A.J.; Ni, J.Q.; Bogan, B.W.; Ramirez-Dorronsoro, J.C.; Cortus, E.L. Greenhouse gas emissions from naturally ventilated freestall dairy barns. Atmos. Environ. 2015, 102, 384–392. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Ghosh, J.K.; Ritz, B. Estimating spatiotemporal variability of ambient air pollutant concentrations with a hierarchical model. Atmos. Environ. 2013, 71, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Sancho, J.; Martínez, J.; Pastor, J.J.; Taboada, J.; Piñeiro, J.I.; García-Nieto, P.J. New methodology to determine air quality in urban areas based on runs rules for functional data. Atmos. Environ. 2014, 83, 185–192. [Google Scholar] [CrossRef]
- USEPA. Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (AQI); Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2012; EPA 454/R99-010.
- Zou, B.; Shi, Z.; Du, S. Gases emissions estimation and analysis by using carbon dioxide balance method in natural-ventilated dairy cow barns. Int. J. Agric. Biol. Eng. 2020, 13, 41–47. [Google Scholar] [CrossRef]
- Mali, D.J. Measurement of Ammonia, Methane and Particulate Matter Emissions from a Dairy Barn; The University of Guelph: Guelph, OA, Canada, 2013. [Google Scholar]
- Bjerg, B.; Zhang, G.; Madsen, J.; Rom, H.B. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements. Environ. Monit. Assess. 2012, 184, 5989–6000. [Google Scholar] [CrossRef]
- Manning, M.I.; Martin, R.V.; Hasenkopf, C.; Flasher, J.; Li, C. Diurnal patterns in global fine particulate matter concentration. Environ. Sci. Technol. 2018, 5, 687–691. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Lai, M.H.; Wang, W.C.; Chiang, H.L.; Shieh, Z.X. Characteristics of water-soluble ionic species in fine (PM2.5) and coarse particulate matter (PM10–2.5) in Kaohsiung, Southern Taiwan. J. Air Waste Manag. Assoc. 2008, 58, 1579–1589. [Google Scholar] [CrossRef]
- Yang, K.; Kong, L.; Tong, S.; Shen, J.; Chen, L.; Jin, S.; Wang, C.; Sha, F.; Wang, L. Double High-Level Ozone and PM2.5 co-pollution episodes in Shanghai, China: Pollution characteristics and significant role of daytime HONO. Atmosphere 2021, 12, 557. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, Q.; Qin, Q.; Ye, J.; Han, Y.; Li, L.; Zhen, W.; Zhi, Q.; Zhang, Y.; et al. Increased secondary aerosol contribution and possible processing on polluted winter days in China. Environ. Pollut. 2019, 127, 78–84. [Google Scholar] [CrossRef]
- Parsons, K.J.; Cooper, W.J.; Albertson, R.C. Limits of principal components analysis for producing a common trait space: Implications for inferring selection, contingency, and chance in evolution. PLoS ONE 2009, 4, e7957. [Google Scholar] [CrossRef] [Green Version]
- Lenz, M.; Müller, F.J.; Zenke, M.; Schuppert, A. Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data. Sci. Rep. 2016, 6, 25696. [Google Scholar] [CrossRef]
- Bloomer, C.; Rehm, G. Using Principal Component Analysis to Find Correlation and Patterns at Diamond Light Source. In Proceedings of the IPAC, Dresden, Germany, 15–20 June 2014. [Google Scholar]
Measurement Period | 9 July~21 July 2009 | |||||
---|---|---|---|---|---|---|
PM2.5 | Ambient PM2.5 | Barn 1 PM2.5 | Barn 2 PM2.5 | |||
Concentration (μg/m3) | Loading rate (mg/m3/min) * | Concentration (μg/m3) | Emission rate (g/min) | Concentration (μg/m3) | Emission rate (g/min) | |
Mean | 30.81 | 4.03 | 72.77 | 2.08 | 67.85 | 1.79 |
SD | 8.54 | 2.26 | 7.71 | 1.62 | 11.64 | 1.30 |
Barn NH3 | Barn H2S | Barn SO2 | ||||
Gaseous compounds | Concentration (ppm) | Emission rate (g/min) | Concentration (ppb) | Emission rate (g/min) | Concentration (ppb) | Emission rate (g/min) |
Mean | 1.01 | 29.10 | 17.69 | 1.03 | 1.85 | 0.21 |
SD | 0.35 | 18.93 | 6.01 | 0.72 | 0.92 | 0.17 |
Barn NO2 | Ambient meteorological parameters | |||||
Gaseous compounds and others | Concentration (ppm) | Emission rate (g/min) | Wind Velocity (m/s) | Solar irradiance (W/m2) | Relative humidity (%) | Temperature (°C) |
Mean | 0.04 | 3.66 | 2.21 | 354.59 | 31.58 | 27.55 |
SD | 0.02 | 2.60 | 1.18 | 32.24 | 6.77 | 3.26 |
Regression | Independent Variables | B (Coefficients for Independent Variables) | T (Coefficient /Standard Error) |
---|---|---|---|
R = 0.933 p value < 0.001 | Intercept | −0.088 | −0.468 |
NH3 | 0.025 | 2.727 | |
SO2 | 4.942 | 4.755 | |
NO2 | 0.166 | 3.516 |
Regression | Independent Variables | B (Coefficients for Independent Variables) | T (Coefficient /Standard Error) |
---|---|---|---|
R = 0.666 p value < 0.001 | Intercept | 1.369 | 2.354 |
NH3 | 0.041 | 1.460 | |
SO2 | 7.733 | 2.410 | |
NO2 | −0.062 | −0.424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, H.-S.; Han, S.-W.; Han, J.-S.; Ndegwa, P.M. Emission Characteristics of Fine Particles in Relation to Precursor Gases in Agricultural Emission Sources: A Case Study of Dairy Barns. Atmosphere 2023, 14, 171. https://doi.org/10.3390/atmos14010171
Joo H-S, Han S-W, Han J-S, Ndegwa PM. Emission Characteristics of Fine Particles in Relation to Precursor Gases in Agricultural Emission Sources: A Case Study of Dairy Barns. Atmosphere. 2023; 14(1):171. https://doi.org/10.3390/atmos14010171
Chicago/Turabian StyleJoo, Hung-Soo, Sang-Woo Han, Jin-Seok Han, and Pius M. Ndegwa. 2023. "Emission Characteristics of Fine Particles in Relation to Precursor Gases in Agricultural Emission Sources: A Case Study of Dairy Barns" Atmosphere 14, no. 1: 171. https://doi.org/10.3390/atmos14010171
APA StyleJoo, H. -S., Han, S. -W., Han, J. -S., & Ndegwa, P. M. (2023). Emission Characteristics of Fine Particles in Relation to Precursor Gases in Agricultural Emission Sources: A Case Study of Dairy Barns. Atmosphere, 14(1), 171. https://doi.org/10.3390/atmos14010171