Spatial Patterns in the Extreme Dependence of Ozone Pollution between Cities in China’s BTH Region
Abstract
:1. Introduction
2. Extreme Value Selection and Spatio-Temporal Variation of Extreme Ozone Pollution
2.1. Data Source and Approach for Selecting Extreme Values
2.2. Variation in Extreme Ozone Pollution in China and in the BTH Region
3. The Extreme Dependence Approach
3.1. The Extreme Dependence and the Test Statistics
3.2. Fitting the Generalized Extreme Value Distribution Based on a Point Process Approach
4. Co-Movement of Extreme Ozone Pollution in the BTH Region
4.1. TQCC Approach with Time Differences
4.2. Monthly Variation in TQCC
4.3. Cities with Simultaneous Extreme Dependence of Ozone Pollution in the BTH Region
4.4. The Time Difference of Extreme Dependence of Ozone Pollution in BTH Region
4.5. Sequential Order for the Occurrence of Extreme Ozone Pollution
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Ecology and Environment of the People’s Republic of China. State of Global Air 2020: A Special Report on Global Exposure to Air Pollution and Its Health Impacts. 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (accessed on 4 January 2023).
- Yan, Y.; Pozzer, A.; Ojha, N.; Lin, J.; Lelieveld, J. Analysis of European ozone trends in the period 1995–2014. Atmos. Chem. Phys. 2017, 18, 5589–5605. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Hong, J.; Lin, Z.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Tao, W.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar]
- Ecology and Environment of the People’s Republic of China; Ministry of Ecological and Environmental Bulletin of China. 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (accessed on 4 January 2023).
- Marcvart, M.; Tiron, S.; Alassadi, A.; Stoica, L. Dual behaviour of ozone-environmental and health implications. J. Environ. Prot. Ecol. 2019, 20, 976–985. [Google Scholar]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. Int. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Kazemiparkouhi, F.; Eum, K.D.; Wang, B.; Manjourides, J.; Suh, H.H. Long-term ozone exposures and cause-specific mortality in a US Medicare cohort. J. Expo. Sci. Environ. Epidemiol. 2019, 30, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicedo-Cabrera, A.M.; Sera, F.; Liu, C.; Armstrong, B.; Gasparrini, A. Short term association between ozone and mortality: Global two stage time series study in 406 locations in 20 countries. BMJ 2020, 368, m108. [Google Scholar] [CrossRef] [Green Version]
- Hayes, F.; Sharps, K.; Harmens, H.; Roberts, I.; Mills, G. Tropospheric ozone pollution reduces the yield of African crops. J. Agron. Crop Sci. 2020, 206, 214–228. [Google Scholar] [CrossRef]
- Sacchelli, S.; Carrari, E.; Paoletti, E.; Anav, A.; Marco, A.D. Economic impacts of ambient ozone pollution on wood production in Italy. Sci. Rep. 2021, 11, 154. [Google Scholar] [CrossRef]
- Proietti, C.; Fornasier, M.F.; Sicard, P.; Anav, A.; Marco, A.D. Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014. J. Forest Res.-Jpn. 2020, 32, 543–551. [Google Scholar] [CrossRef]
- Pleijel, H.; Broberg, M.C.; Uddling, J. Ozone impact on wheat in Europe, Asia and North America-A comparison. Sci. Total Environ. 2019, 664, 908–914. [Google Scholar] [CrossRef]
- Juran, S.; Edwards-Jonášová, M.; Cudlín, P.; Zapletal, M.; Šigut, L.; Grace, J.; Urban, O. Prediction of ozone effects on net ecosystem production of Norway spruce forest. iForest-Biogeosciences For. 2018, 11, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Kašpar, V.; Zapletal, M.; Samec, P.; Komárek, J.; Bílek, J.; Juráň, S. Unmanned aerial systems for modelling air pollution removal by urban greenery. Urban For. Urban Green. 2022, 78, 127757. [Google Scholar] [CrossRef]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005; Occupational and Environmental Health Team: Geneva, Switzerland, 2006. [Google Scholar]
- Zhang, C.; Luo, S.; Zhao, W.; Wang, Y.; Wen, X. Impacts of Meteorological Factors, VOCs Emissions and Inter-Regional Transport on Summer Ozone Pollution in Yuncheng. Atmosphere 2021, 12, 1661. [Google Scholar] [CrossRef]
- Yang, X.; Wu, K.; Lu, Y.; Wang, S.; Lei, Y. Origin of regional springtime ozone episodes in the Sichuan Basin, China: Role of synoptic forcing and regional transport. Environ. Pollut. 2021, 278, 116845. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S.; Chen, X.; Li, Z.; Li, M.; Song, Z.; Liu, W.; Li, P.; Zhang, X.; Lichtfouse, E.; et al. Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. Environ. Chem. Lett. 2022, 20, 1577–1588. [Google Scholar] [CrossRef]
- Faloona, I.C.; Chiao, S.; Eiserloh, A.J.; Alvarez, R.J., II; Kirgis, G.; Langford, A.O.; Senff, C.J.; Caputi, D.; Hu, A.; Iraci, L.T.; et al. The California Baseline Ozone Transport Study (CABOTS). Bull. Am. Meteorol. Soc. 2020, 101, E427–E445. [Google Scholar] [CrossRef]
- Shen, L.; Liu, J.; Zhao, T.; Xu, X.; Han, H.; Wang, H.; Shu, Z. Atmospheric transport drives regional interactions of ozone pollution in China. Sci. Total Environ. 2022, 830, 154634. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, D.; Henze, D.K.; Li, Y.; Mao, F. Transboundary transport of ozone pollution to a US border region: A case study of Yuma. Environ. Pollut. 2021, 273, 116421. [Google Scholar] [CrossRef]
- Mojtaba, M.; Archer, C.L.; Ali, M. The importance of transport to ozone pollution in the U.S. Mid-Atlantic. Atmos. Environ. 2018, 191, 420–431. [Google Scholar] [CrossRef]
- Odman, M.T.; Qin, M.; Hu, Y.; Russell, A.G.; Boylan, J.W. Interstate transport of ozone in eastern United States: An analysis of the impact of southeastern states’ emissions in 2017. Atmos. Environ. 2020, 236, 117628. [Google Scholar] [CrossRef]
- Chu, A.; Li, R.; So, M. Bayesian spatial-temporal modeling of air pollution data with dynamic variance and leptokurtosis. Spat. Stat. 2018, 26, 1–20. [Google Scholar] [CrossRef]
- Omidi, M.; Mohammadzadeh, M. A new method to build spatio-temporal covariance functions: Analysis of ozone data. Stat. Pap. 2016, 57, 689–703. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Guo, J.; Wang, G.; Gong, Y. Spatial concentration, impact factors and prevention-control measures of PM2.5 pollution in China. Nat. Hazards 2017, 86, 393–410. [Google Scholar] [CrossRef]
- Yang, C.; Zhuo, Q.; Chen, J.; Fang, Z.; Xu, Y. Analysis of the spatio-temporal network of air pollution in the Yangtze River Delta urban agglomeration, China. PLoS ONE 2022, 17. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xie, D.; Yuan, Z.; Huang, Z.; Jia, W. Quantification of Regional Ozone Pollution Characteristics and Its Temporal Evolution: Insights from Identification of the Impacts of Meteorological Conditions and Emissions. Atmosphere 2021, 12, 279. [Google Scholar] [CrossRef]
- Li, L.; Hong, X.; Wang, J. Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach. Energy 2020, 195, 116842. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, S.; Tian, Z.; Zhen, X.; Peng, Y. Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample. J. Clean. Prod. 2017, 142, 915–925. [Google Scholar] [CrossRef]
- Davison, A.C.; Huser, R.; Thibaud, E. Spatial extremes. In Handbook of Environmental and Ecological Statistics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Huser, R.; Wadsworth, J.L. Modeling spatial processes with unknown extremal dependence class. J. Am. Stat. Assoc. 2017, 114, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Yu, M.; Zhang, Z. Statistical Learning of the Worst Regional Smog Extremes with Dynamic Conditional Modeling. Atmosphere 2020, 11, 665. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Chen, R. Modeling maxima with autoregressive conditional Fréchet model. J. Econ. 2018, 207, 325–351. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Cui, Q. Random threshold driven tail dependence measures with application to precipitation data analysis. Stata Sin. 2017, 27, 685–709. [Google Scholar] [CrossRef]
- Cheng, G.; Hong, L.; Lin, Z.; Xu, Y.; Yang, Y. Persistent ozone pollution episodes in North China exacerbated by regional transport. Environ. Pollut. 2020, 265, 115056. [Google Scholar] [CrossRef]
- Chang, L.; Xu, J.; Tie, X.; Gao, W. The impact of Climate Change on the Western Pacific Subtropical High and the related ozone pollution in Shanghai, China. Sci. Rep. 2019, 9, 116998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013-2017: Synoptic impacts and source apportionment. Environ. Pollut. 2019, 257, 113631. [Google Scholar] [CrossRef]
- Chang, L.; He, F.; Tie, X.; Xu, J.; Gao, W. Meteorology driving the highest ozone level occurred during mid-spring to early summer in Shanghai, China. Sci. Total Environ. 2021, 785, 147253. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, Z. The haze extreme co-movements in Beijing-Tianjin-Hebei region and its extreme dependence pattern recognitions. Sci. Prog. 2020, 103, 36850420916315. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin, Germany, 2001. [Google Scholar]
- Smith, R. Statistics of extremes, with applications in environment, insurance, and finance. In Extreme Values in Finance, Telecommunications, and the Environment; Chapman and Hall/CRC: London, UK, 2003; pp. 1–78. [Google Scholar]
- Smith, R. Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone. Statist. Sci. 1989, 4, 367–377. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Han, X.; Zhu, L.; Wang, S.; Meng, X.; Zhang, M. Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015. Atmos. Chem. Phys. 2018, 18, 12207–12221. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Tang, G.; Xin, J.; Wang, L.; Wang, Y. Spatial-Temporal Variations of Ozone during Severe Photochemical Pollution over the Beijing-Tianjin-Hebei Region. Res. Environ. Sci. 2016, 29, 2016. [Google Scholar]
- Fang, X.; Xiao, H.; Sun, Z.; Liu, C.; Zhang, Z.; Xie, Y.; Liang, Y.; Wang, F. Characteristics of Ground-Level Ozone from 2015 to 2018 in BTH Area, China. Atmosphere 2020, 11, 130. [Google Scholar] [CrossRef]
Results | |||
---|---|---|---|
Number of selected city pairs (number of cities involved) | 0.4 | 0.5 | 61 (13) |
0.6 | 57 (13) | ||
0.7 | 54 (13) | ||
Number of selected city pairs (number of cities involved) | 0.5 | 0.5 | 31 (12) |
0.6 | 26 (12) | ||
0.7 | 23 (11) | ||
Number of selected city pairs (number of cities involved) | 0.6 | 0.5 | 8 (8) |
0.6 | 3 (5) | ||
0.7 | 2 (3) |
Results | |||
---|---|---|---|
Number of selected city pairs (number of cities involved) | 0.6 | 11 (10) | |
0.7 | 10 (9) | ||
0.8 | 7 (7) | ||
Number of selected city pairs (number of cities involved) | 0.6 | 6 (11) | |
0.7 | 3 (5) | ||
0.8 | 2 (3) | ||
Number of selected city pairs (number of cities involved) | 0.6 | 34 (13) | |
0.7 | 22 (13) | ||
0.8 | 16 (12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Sheng, S. Spatial Patterns in the Extreme Dependence of Ozone Pollution between Cities in China’s BTH Region. Atmosphere 2023, 14, 141. https://doi.org/10.3390/atmos14010141
Deng L, Sheng S. Spatial Patterns in the Extreme Dependence of Ozone Pollution between Cities in China’s BTH Region. Atmosphere. 2023; 14(1):141. https://doi.org/10.3390/atmos14010141
Chicago/Turabian StyleDeng, Lu, and Siqi Sheng. 2023. "Spatial Patterns in the Extreme Dependence of Ozone Pollution between Cities in China’s BTH Region" Atmosphere 14, no. 1: 141. https://doi.org/10.3390/atmos14010141
APA StyleDeng, L., & Sheng, S. (2023). Spatial Patterns in the Extreme Dependence of Ozone Pollution between Cities in China’s BTH Region. Atmosphere, 14(1), 141. https://doi.org/10.3390/atmos14010141