Grain Size Characteristics of MIS 5 Sediments and Evolution of the East Asian Summer Monsoon in the Zhifu Section, Yantai City, Shandong Province, China
Abstract
:1. Introduction
2. Geological Background
2.1. Geological and Geographical Overview
2.2. Stratigraphy of the Zhifu Section
3. Experimental Methods
3.1. Geological Age Analysis
3.2. Grain Size Analysis
3.3. pH Analysis
4. Results
4.1. Chronological Framework
4.2. Grain Size Results
4.3. pH Results
5. Discussion
5.1. Environmental Significance of Climate Proxies
5.2. Evolution of the EASM in the ZFS
5.2.1. ZF4
5.2.2. ZF5
5.2.3. ZF6
5.2.4. ZF7
5.2.5. ZF8
6. Conclusions
- (1)
- Through EM grain size analysis, EM1 was shown to be a clay component EM, representing a strong weathering pedogenesis effect and weak dynamic environment; EM2 and EM3 are coarse silt and very fine sand component EMs, respectively, representing a weak weathering pedogenesis effect and strong dynamic environment.
- (2)
- Average Mz, clay content, EM1, and pH showed trough values in the ZF5 and ZF7 (loess) units that correspond to MIS 5b and 5d, while EM3 content showed peaks, indicating a relatively cold–dry environment, reflecting a weakening period of the EASM. The paleosol units (ZF4, ZF6, and ZF8) correspond to MIS 5a, 5c, and 5e. Mz, clay content, EM1 content, and pH showed high values, and EM3 content was relatively low, indicating a humid environment with more abundant precipitation, reflecting a period of EASM enhancement; MIS5e is the warmest and wettest.
- (3)
- These climate fluctuation events over a ten-thousand-year timescale are consistent with the NHSI at 30° N, EASM intensity of stalagmite δ18O records in China, and sea-level fluctuation in the Yellow and Bohai Seas, indicating that they are the result of changes in global solar radiation and can be classed as global climate fluctuation events.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sánchez Goñi, M.F. Introduction to climate and vegetation in Europe during MIS5. Dev. Quat. Sci. 2007, 7, 197–205. [Google Scholar]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdottir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- GRIP Members. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 1993, 364, 203–207. [Google Scholar] [CrossRef]
- Ou, X.J.; Li, B.S.; Jin, H.L.; Dong, G.R.; Zhang, D.D.; Wu, Z.; Wen, X.H.; Zeng, L.H.; Ouyang, C.T.; Yang, Y. Sedimentary characteristics of paleo-aeolian dune sands of Salawusu Formation in the Salawusu River Valley. J. Geogr. Sci. 2008, 18, 211–224. [Google Scholar] [CrossRef]
- Du, S.H.; Li, B.S.; Chen, M.H.; Zhang, D.D.; Xiang, R.; Niu, D.F.; Wen, X.H.; Ou, X.J. Kiloyear-scale climate events and evolution during the Last Interglacial, Mu Us Desert, China. Quat. Int. 2012, 263, 63–70. [Google Scholar] [CrossRef]
- An, Z.S.; Porter, S.C. Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 1997, 25, 603–606. [Google Scholar] [CrossRef]
- Chen, F.H.; Feng, Z.D.; Zhang, J.W. Loess particle size data indicative of stable winter monsoons during the last interglacial in the western part of the Chinese Loess Plateau. Catena 2000, 39, 233–244. [Google Scholar] [CrossRef]
- Thouveny, N.; Beaulieu, J.L.; Bonifay, E.; Creer, K.M.; Guiot, J.; Icole, M.; Johnsen, S.; Jouzel, J.; Reille, M.; Williams, T.; et al. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 1994, 371, 503–506. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; Kong, X.G.; Shao, X.H.; Chen, S.T.; Wu, J.Y.; Jiang, X.Y.; Wang, X.F.; An, Z.S. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2008, 451, 1090–1093. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Edwards, R.L.; Sinha, A.; Spötl, C.; Yi, L.; Chen, S.T.; Kelly, M.; Kathayat, G.; Wang, X.F.; Li, X.L.; et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 2016, 534, 640–646. [Google Scholar] [CrossRef]
- Dutton, A.; Lambeck, K. Ice volume and sea level during the last interglacial. Science 2012, 337, 216–219. [Google Scholar] [CrossRef]
- Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Linsley, B.K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years. Nature 1996, 380, 234–237. [Google Scholar] [CrossRef]
- IOCAS (Marine Geology Laboratory, Institute of Oceanology, Chinese Academy of Sciences). Geology of Bohai Sea; Science Press: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Spratt, R.M.; Lisiecki, L.E. A Late Pleistocene sea level stack. Clim. Past. 2016, 11, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Shi, Z.G.; Tan, L.C.; Deng, C.L. Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternanry. Clim. Dyn. 2017, 50, 2183–2197. [Google Scholar] [CrossRef]
- Yi, L.; Yu, H.J.; Ortiz, J.D.; Xu, X.Y.; Chen, S.L.; Ge, J.Y.; Hao, Q.Z.; Yao, J.; Shi, X.F.; Peng, S.Z. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 329–330, 101–117. [Google Scholar] [CrossRef]
- Cao, J.X.; Li, P.Y.; Shi, N. Study on the Loess of Miaodao Islands in Shandong Province. Sci. China Ser. B Chem. Life Sci. Earth Sci. 1988, XXXI, 120–127. [Google Scholar]
- Du, S.H.; Li, B.S.; Li, Z.W.; Chen, M.H.; Xiang, R.; Zhang, D.D.; Niu, D.F.; Zhang, L.L. Rapid changes in the East Asian Monsoon during the Last Interglacial in the Bohai Sea coastal zone, China. J. Sediment. Res. 2014, 84, 88–96. [Google Scholar] [CrossRef]
- Li, Z.W.; Li, B.S.; Sun, L.; Wang, F.N. Climatic Characteristics indicated by the variations of Rb/Sr in the Liukuang Section during the last glacial period. Trop. Geogr. 2015, 35, 592–600. (In Chinese) [Google Scholar]
- Li, Z.W.; Wang, F.N.; Li, B.S.; Du, D.D.; Zhang, H.J.; Song, Y.G.; Du, S.H.; Sun, L. Paleoenvironmental changes and East Asian winter monsoon evolution: Evidence from coastal sedimentary sequence of the Last Glacial in the Shandong Peninsula, China. Front. Earth Sci. 2022. on line. [Google Scholar] [CrossRef]
- Miao, X.D.; Chongyi, E.; Xu, S.J.; Wang, Q.S.; Hanson, P.R.; Chen, H.T.; Shi, Y.K. Age and source of coastal loess in Shandong Peninsula, Bohai Sea, China: Implications for dust aggradation in respond to sea-level change. Aeolian Res. 2022, 54, 100767. [Google Scholar] [CrossRef]
- Wang, Q. The uplift rate over the past 124 ka along the North-east coast of Shandong Peninsula. Acta Sci. Nat. Univ. Pekin. 1998, 34, 106–113. (In Chinese) [Google Scholar]
- Niu, H.Y.; Jin, B.F.; Liu, C.N.; Gong, L.X. Origin of loess-like loess in Zhifu Island on mineralogic view and paleoclimatic change. Glob. Geol. 2009, 28, 476–484. (In Chinese) [Google Scholar]
- Niu, H.Y.; Jin, B.F.; Liu, C.N.; Zhong, J.W.; Zhang, Z.G. Sedimentary characteristics and provenance analysis of loess in the Zhifu Island, Shandong, China. Mar. Geol. Quat. Geol. 2010, 30, 115–123. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, S.Y.; Mao, A.H.; Man, Z.Y. Geomorphologic and environmental evolutions in the region of the Zhifu island tombolo of the Shandong Peninsula. Mar. Geol. Quat. Geol. 2003, 23, 31–36. (In Chinese) [Google Scholar]
- Xing, X.C.; Du, G.Y.; Wei, X.H.; Li, Y. The erosion of gravel beaches in northern coast of Zhifu Island. Trans. Oceanol. Limnol. 2009, 1, 73–78. (In Chinese) [Google Scholar]
- YLHC (Yantai Local Historical Commission). Yantai City Annals; Popular Science Press: Beijing, China, 1994. (In Chinese) [Google Scholar]
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef]
- Liu, D.S. Loess and the Environment; Science Press: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River Bar: A study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 29, 87–97. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.F. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef] [Green Version]
- Weltje, G.J.; Prins, M.A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sediment. Geol. 2003, 162, 39–62. [Google Scholar] [CrossRef]
- Paterson, G.A.; Heslop, D. New methods for unmixing sediment grain size data. Geochem. Geophys. Geosyst. 2015, 16, 4494–4506. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Song, Y.G.; Zong, X.L.; Zhang, Z.P.; Cheng, L.Q. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin. Acta Geogr. Sin. 2019, 74, 162–177. (In Chinese) [Google Scholar]
- Berger, A.; Loutre, M.F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- An, Z.S.; Kukla, G.; Porter, S.C.; Xiao, J.L. Late Quaternary dust flow on the Chinese Loess Plateau. Catena 1991, 18, 125–132. [Google Scholar] [CrossRef]
- Ding, Z.L.; Ren, J.Z.; Liu, D.S.; Sun, J.M.; Zhou, X.Q. The irregular millennial variations and its mechanism of monsoon-desert system during late Pleistocene. Sci. China Ser. D Earth Sci. 1996, 26, 385–391. (In Chinese) [Google Scholar]
- Jia, Y.F.; Pan, J.L.; Huang, C.C. PH value’s measurement and research of its palaeoclimatic meaning in the Holocene loess section. J. Shaanxi Norm. Univ. 2004, 32, 102–105. (In Chinese) [Google Scholar]
Strata | Stratigraphic Description | Thickness | |
---|---|---|---|
ZF1 | Cultivation layer | Dark black, containing humus and undecomposed branches and leaves, relatively loose | 37 cm |
ZF2 | Sandy loess | Light brown, very fine sandy silt with medium sand, with gravel and plant roots | 35 cm |
ZF3 | Sandy loess/loess | Brown, very fine sand-medium sandy silt with clay, more compact | 70 cm |
ZF4 | Paleosol | Reddish brown, clayey silt with very fine sand, with black iron-manganese cutan | 78 cm |
ZF5 | Loess | Ochre yellow soil, very fine sandy silt with clay, occasional vertical distribution of iron-manganese cutan | 58 cm |
ZF6 | Paleosol | Bright brown, clayey silt with very fine sand, compact | 60 cm |
ZF7 | Loess | Dark brown, very fine sandy silt with clay, with small quantity of iron-manganese spots, compact | 56 cm |
ZF8 | Paleosol | Brown, clayey silt with very fine sand, with abundant iron-manganese spots, compact | 104 cm |
Layer | Depth (m) | U (ppm) | Th (ppm) | K (%) | Dose Rate (Gy/Ka) | De (Gy) | Age (ka) |
---|---|---|---|---|---|---|---|
ZF3T | 0.72 | 2.02 | 12.20 | 2.08 | 4.06 | 255.46 ± 11.95 | 62.85 ± 6.94 |
ZF3B | 1.28 | 2.05 | 12.00 | 2.24 | 4.47 | 313.66 ± 29.71 | 70.18 ± 9.67 |
ZF3B | 1.28 | 2.10 | 11.80 | 2.05 | 3.39 ± 0.14 | 270.78 ± 15.48 | 79.8 ± 5.64 |
ZF4B | 1.89 | 0.70 | 3.39 | 2.70 | 3.12 ± 0.24 | 260.1 ± 5.9 | 83.4 ± 6.6 |
ZF6T | 2.63 | 2.49 | 11.70 | 2.08 | 3.44 ± 0.24 | 325.8 ± 18.4 | 94.7 ± 8.5 |
ZF8T | 3.91 | 1.32 | 6.78 | 1.78 | 2.55 ± 0.19 | 318.5 ± 9.1 | 118.5 ± 9.3 |
ZF8B | 4.96 | 1.66 | 7.44 | 2.03 | 2.72 ± 0.20 | 322.1 ± 10.0 | 124.9 ± 9.7 |
Layer | Depth | Interval Age | Equivalent to MISs |
---|---|---|---|
ZF3 | 73–142 cm | 62.85–74.99 ka | MIS 4 |
ZF4 | 143–220 cm | 74.99–83.40 ka | MIS 5a |
ZF5 | 221–278 cm | 83.40–94.70 ka | MIS 5b |
ZF6 | 279–338 cm | 94.7–105.2 ka | MIS 5c |
ZF7 | 339–394 cm | 105.2–118.5 ka | MIS 5d |
ZF8 | 395–498 cm | 118.5–124.9 ka | MIS 5e |
EM1 | EM2 | EM3 | Mz | Clay Content | pH Value | ||
---|---|---|---|---|---|---|---|
ZF4 | Average | 51.66 | 28.15 | 20.19 | 6.13 | 23.63 | 6.68 |
Range | 43.50–63.13 | 12.49–37.35 | 13.67–27.94 | 5.84–6.34 | 20.10–28.46 | 6.16–7.36 | |
ZF5 | Average | 47.02 | 17.15 | 35.83 | 5.95 | 22.44 | 7.09 |
Range | 38.89–51.78 | 0.00–31.51 | 26.66–53.77 | 5.59–6.21 | 19.47–26.42 | 6.45–7.64 | |
ZF6 | Average | 52.15 | 21.79 | 26.06 | 6.20 | 25.63 | 7.07 |
Range | 45.44–66.92 | 11.31–29.37 | 7.16–41.32 | 5.93–6.41 | 22.90–28.68 | 6.37–7.77 | |
ZF7 | Average | 42.42 | 26.56 | 31.02 | 5.98 | 22.40 | 6.87 |
Range | 31.69–56.32 | 15.09–38.21 | 11.37–47.46 | 5.55–6.26 | 16.87–27.08 | 6.24–7.65 | |
ZF8 | Average | 51.78 | 35.48 | 12.74 | 6.38 | 27.14 | 6.76 |
Range | 41.64–60.35 | 20.81–50.98 | 1.38–27.08 | 6.08–6.58 | 22.57–30.38 | 6.21–7.35 | |
MIS 5 | Average | 49.57 | 27.18 | 23.26 | 6.16 | 24.60 | 6.87 |
Range | 31.69–66.92 | 0.00–50.98 | 1.38–53.77 | 5.55–6.58 | 16.87–30.38 | 6.16–7.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Li, Z.; Song, Y.; Zhou, H.; Fan, Q.; Li, W.; Tang, N. Grain Size Characteristics of MIS 5 Sediments and Evolution of the East Asian Summer Monsoon in the Zhifu Section, Yantai City, Shandong Province, China. Atmosphere 2023, 14, 153. https://doi.org/10.3390/atmos14010153
Sun L, Li Z, Song Y, Zhou H, Fan Q, Li W, Tang N. Grain Size Characteristics of MIS 5 Sediments and Evolution of the East Asian Summer Monsoon in the Zhifu Section, Yantai City, Shandong Province, China. Atmosphere. 2023; 14(1):153. https://doi.org/10.3390/atmos14010153
Chicago/Turabian StyleSun, Li, Zhiwen Li, Yougui Song, Hongyi Zhou, Qingbin Fan, Wubiao Li, and Ni Tang. 2023. "Grain Size Characteristics of MIS 5 Sediments and Evolution of the East Asian Summer Monsoon in the Zhifu Section, Yantai City, Shandong Province, China" Atmosphere 14, no. 1: 153. https://doi.org/10.3390/atmos14010153
APA StyleSun, L., Li, Z., Song, Y., Zhou, H., Fan, Q., Li, W., & Tang, N. (2023). Grain Size Characteristics of MIS 5 Sediments and Evolution of the East Asian Summer Monsoon in the Zhifu Section, Yantai City, Shandong Province, China. Atmosphere, 14(1), 153. https://doi.org/10.3390/atmos14010153