Westerly Variations in the Eastern Tibetan Plateau since the Last Interglacial Revealed by the Grain-Size Records of the Ganzi Loess
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Methods
2.2.1. Grain-Size Measurements
2.2.2. End-Member Analysis
2.2.3. Age Model
3. Results
3.1. Grain-Size Results
3.2. EMMA Results
4. Discussion
4.1. Paleoclimatic Implications of Endmembers
4.2. The Evolution of the Westerlies over the Tibetan Plateau
4.3. The Westerly Mechanisms in the Tibetan Plateau
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Chen, J.; Huang, W.; Chen, S.; Huang, X.; Jin, L.; Jia, J.; Zhang, X.; An, C.; Zhang, J.; et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev. 2019, 192, 337–354. [Google Scholar] [CrossRef]
- Toggweiler, J.R.; Russell, J.L.; Carson, S.R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 2006, 21, PA2005. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.J.; Zhang, X.Y.; Wang, D.; Shen, Z.X.; Mei, F.M.; Cheng, Y.; Yan, L.W. The Important Significance of Westerly Wind Study. Mar. Geol. Quat. Geol. 2004, 24, 125–132. (In Chinese) [Google Scholar]
- Abell, J.T.; Winckler, G.; Anderson, R.F.; Herbert, T.D. Poleward and weakened westerlies during Pliocene warmth. Nature 2021, 589, 70–75. [Google Scholar] [CrossRef]
- Chen, G.; Held, I.M. Phase Speed Spectra and the Recent Poleward Shift of Southern Hemisphere Surface Westerlies. Geophys. Res. Lett. 2007, 34, L21805. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Lohmann, G.; Krebs-Kanzow, U.; Ionita, M.; Shi, X.; Sidorenko, D.; Gong, X.; Chen, X.; Gowan, E.J. Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate. Geophys. Res. Lett. 2020, 47, e2019GL085868. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Lehnert, L.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci. Rep. 2016, 6, 24367. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Guo, W.; Qiu, B.; Xue, Y.; Hsu, P.-C.; Wei, J. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun. 2018, 9, 4243. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, K.; Tada, R.; Matsui, H.; Irino, T.; Tani, A.; Toyoda, S. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 247, 144–161. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Fang, X.; Han, Y.; Ma, J.; Song, L.; Yang, S.; Zhang, X. Dust Storms and Loess Accumulation on the Tibetan Plateau: A Case Study of Dust Event on 4 March 2003 in Lhasa. Chin. Sci. Bull. 2004, 49, 953–960. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Liu, J.; Cao, X.; Hou, J.; Zhu, L.; Xu, X.; Liu, X.; Wang, M.; Wu, D.; et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat. Sci. Rev. 2020, 243, 106444. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- An, Z.; Colman, S.M.; Zhou, W.; Li, X.; Brown, E.T.; Jull, A.J.T.; Cai, Y.; Huang, Y.; Lu, X.; Chang, H.; et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep. 2012, 2, 619. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xia, D.; Gao, F.; Wang, S.; Li, D.; Fan, Y.; Chen, Z.; Tian, W.; Liu, X.; Sun, X.; et al. Holocene moisture evolution and its response to atmospheric circulation recorded by aeolian deposits in the southern Tibetan Plateau. Quat. Sci. Rev. 2021, 270, 107169. [Google Scholar] [CrossRef]
- Gao, F.; Yang, J.; Wang, S.; Wang, Y.; Li, K.; Wang, F.; Ling, Z.; Xia, D. Variation of the Winter Mid-Latitude Westerlies in the Northern Hemisphere During the Holocene Revealed by Aeolian Deposits in the Southern Tibetan Plateau. Quat. Res. 2022, 107, 104–112. [Google Scholar] [CrossRef]
- Jia, Y.N.; Zhang, Y.; Huang, C.C.; Wang, N.; Qiu, H.; Wang, H.; Xiao, Q.; Chen, D.; Lin, X.; Zhu, Y.; et al. Late Pleistocene-Holocene Aeolian Loess-Paleosol Sections in the Yellow River Source Area on the Northeast Tibetan Plateau: Chronostratigraphy, Sediment Provenance, and Implications for Paleoclimate Reconstruction. Catena 2022, 208, 105777. [Google Scholar] [CrossRef]
- Xie, H.C. Climate Change Characteristics in the Asian Westerlies Dominated Area Recorded by Geochemical Proxies During Late Quaternary. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2019. [Google Scholar]
- Maher, B.A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quat. Sci. Rev. 2016, 154, 23–84. [Google Scholar] [CrossRef]
- Yang, S.; Luo, Y.; Li, Q.; Liu, W.; Chen, Z.; Liu, L.; Liu, X. Comparisons of Topsoil Geochemical Elements from Northwest China and Eastern Tibetan Plateau Identify the Plateau Interior as Tibetan Dust Source. Sci. Total Environ. 2021, 798, 149240. [Google Scholar] [CrossRef]
- Wake, C.P.; Mayewski, P.A.; Li, Z.; Han, J.; Qin, D. Modern eolian dust deposition in central Asia. Tellus B Chem. Phys. Meteorol. 1994, 46, 220. [Google Scholar] [CrossRef] [Green Version]
- Fang, X. The Origin and Provenance of Malan Loess Along the Eastern Margin of Qinghai-Xizang (Tibetan) Plateau and Its Adjacent Area. Sci. China Ser. B 1995, 38, 876–887. [Google Scholar]
- Janecek, T.R.; Rea, D.K. Quaternary Fluctuations in the Northern Hemisphere Trade Winds and Westerlies. Quat. Res. 1985, 24, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Vandenberghe, J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth Sci. Rev. 2013, 121, 18–30. [Google Scholar] [CrossRef]
- Chang, H.; An, Z.; Wu, F.; Jin, Z.; Liu, W.; Song, Y. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene. Palaeogeogr. Palaeoclim. Palaeoecol. 2013, 386, 364–373. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.K.; An, Z.; Vandenberghe, J.; Lu, H.; Su, R.; Liu, T. Bimodal Grain-Size Distribution of Chinese Loess, and Its Palaeoclimatic Implications. Catena 2004, 55, 325–340. [Google Scholar] [CrossRef]
- Dietze, E.; Maussion, F.; Ahlborn, M.; Diekmann, B.; Hartmann, K.; Henkel, K.; Kasper, T.; Lockot, G.; Opitz, S.; Haberzettl, T. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments. Clim. Past 2014, 10, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Weltje, G.J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. J. Int. Assoc. Math. Geol. 1997, 29, 503–549. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Fitzsimmons, K.E.; Chang, H.; Orozbaev, R.; Li, X. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 2018, 14, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Dietze, M.; Schulte, P.; Dietze, E. Application of end-member modelling to grain-size data: Constraints and limitations. Sedimentology 2021, 69, 845–863. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Fitzsimmons, K.E.; Chen, X.; Wang, Q.; Sun, H.; Zhang, Z. New Evidence for the Provenance and Formation of Loess Deposits in the Ili River Basin, Arid Central Asia. Aeolian Res. 2018, 35, 1–8. [Google Scholar] [CrossRef]
- Jia, J.; Liu, H.; Gao, F.; Xia, D. Variations in the westerlies in Central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 504, 156–161. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Fitzsimmons, K.E.; Dave, A.K.; Liu, Y.; Zong, X.; Sun, H.; Liu, H.; Orozbaev, R. Investigating Potential Links between Fine-Grained Components in Loess and Westerly Airflow: Evidence from East and Central Asia. Front. Earth Sci. 2022, 10, 901629. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Z.; Chen, H.; Luo, Y.; Liu, L.; Liu, X.; Li, Q.; Zhou, J.; Li, P. Magnetic Properties of the Ganzi Loess and Their Implications for Precipitation History in the Eastern Tibetan Plateau Since the Last Interglacial. Paleoceanogr. 2022, 37, e2021PA004322. [Google Scholar] [CrossRef]
- Yan, M.; Fang, X.; Chen, S.; Yang, S.; Lü, L.; Li, J.; An, Z. Pleistocene magnetic susceptibility and paleomagnetism of the Tibetan loess and its implications on large climatic change events. Sci. China Ser. D Earth Sci. 2001, 44, 227–232. [Google Scholar] [CrossRef]
- Lu, H.; An, Z. Pretreated methods on loess-palaeosol samples granulometry. Chin. Sci. Bull. 1998, 43, 237–240. [Google Scholar] [CrossRef]
- Paterson, G.A.; Heslop, D. New methods for unmixing sediment grain size data. Geochem. Geophys. Geosyst. 2015, 16, 4494–4506. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Liu, L.; Chen, H.; Tang, G.; Luo, Y.; Liu, N.; Cheng, T.; Li, D. Variability and environmental significance of organic carbon isotopes in Ganzi loess since the last interglacial on the eastern Tibetan Plateau. Catena 2020, 196, 104866. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Lu, H.; Sun, D.; van Huissteden, J.; Konert, M. The late Miocene and Pliocene climate in East Asia as recorded by grain size and magnetic susceptibility of the Red Clay deposits (Chinese Loess Plateau). Palaeogeogr. Palaeoclim. Palaeoecol. 2004, 204, 239–255. [Google Scholar] [CrossRef]
- Prins, M.A.; Weltje, G.J. End-Member Modeling of Siliciclastic Grain-Size Distributionsthe Late Quaternary Record of Eolian and Fluvial Sediment Supply to the Arabian Sea and Its Paleoclimatic Significance. In Numerical Experiments in StratigraphyRecent Advances in Stratigraphic and Sedimentologic Computer Simulations; Society for Sedimentary Geology: Tulsa, OK, USA, 1999. [Google Scholar]
- Sun, D.; Bloemendal, J.; Rea, D.K.; Vandenberghe, J.; Jiang, F.; An, Z.; Su, R. Grain-Size Distribution Function of Polymodal Sediments in Hydraulic and Aeolian Environments, and Numerical Partitioning of the Sedimentary Components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Tsoar, H.; Pye, K. Dust transport and the question of desert loess formation. Sedimentology 1987, 34, 139–153. [Google Scholar] [CrossRef]
- Shiling, Y.; Zhongli, D. Spatial Changes in Grain Size of Loess Deposits in the Chinese Loess Plateau and Implications for Palaeoenvironment. Quat. Sci. 2017, 37, 934–944. [Google Scholar]
- Han, Y.; Fang, X.; Kang, S.; Wang, H.; Kang, F. Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet. Atmos. Environ. 2008, 42, 2358–2368. [Google Scholar] [CrossRef]
- Újvári, G.; Kok, J.F.; Varga, G.; Kovács, J. The Physics of Wind-Blown Loess: Implications for Grain Size Proxy Interpretations in Quaternary Paleoclimate Studies. Earth Sci. Rev. 2016, 154, 247–278. [Google Scholar] [CrossRef] [Green Version]
- Bronger, A.; Heinkele, T. Mineralogical and clay mineralogical aspects of loess research. Quat. Int. 1990, 7–8, 37–51. [Google Scholar] [CrossRef]
- An, Z.; Kukla, G.J.; Porter, S.C.; Xiao, J. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res. 1991, 36, 29–36. [Google Scholar] [CrossRef]
- Pye, K. The nature, origin and accumulation of loess. Quat. Sci. Rev. 1995, 14, 653–667. [Google Scholar] [CrossRef]
- Prins, M.A. Glacial and Interglacial Eolian Dust Dispersal Patterns across the Chinese Loess Plateau Inferred from Decomposed Loess Grain-Size Records. Geochem. Geophys. Geosyst. 2007, 8, Q07Q05. [Google Scholar] [CrossRef]
- Donghuai, S.; Chen, F.; Bloemendal, J.; Su, R. Seasonal Variability of Modern Dust over the Loess Plateau of China: Seasonal Variability of Dust in China. J. Geophys. Res. Atmos. 2003, 108, D21. [Google Scholar]
- van der Does, M.; Knippertz, P.; Zschenderlein, P.; Harrison, R.G.; Stuut, J.-B.W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 2018, 4, eaau2768. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Wang, J. Loess Record of Qinghai-Xizang Plateau Monsoon Variations in the Eastern Part of the Plateau since the Last Interglacial. Quat. Sci. 1999, 19, 330–335, (In Chinese with English abstract). [Google Scholar]
- Sun, D.; Su, R.; Bloemendal, J.; Lu, H. Grain-Size and Accumulation Rate Records from Late Cenozoic Aeolian Sequences in Northern China: Implications for Variations in the East Asian Winter Monsoon and Westerly Atmospheric Circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 264, 39–53. [Google Scholar] [CrossRef]
- Wang, L.; Jia, J.; Zhao, H.; Liu, H.; Duan, Y.; Xie, H.; Zhang, D.D.; Chen, F. Optical Dating of Holocene Paleosol Development and Climate Changes in the Yili Basin, Arid Central Asia. Holocene 2019, 29, 1068–1077. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Harrison, S.P. Glacial-Interglacial Changes in Dust Deposition on the Chinese Loess Plateau. Quat. Sci. Rev. 2003, 22, 1859–1878. [Google Scholar] [CrossRef]
- Ting, C.; Yang, S.; Liu, W.; Li, S.; Liang, M.; Liu, N.; Chen, H. Characteristics and Paleoclimatic Significance of the Soil Bulk Density for the Loess Deposit from Ganzi Region, Western Sichuan Plateau. J. Earth Environ. 2018, 9, 230–237. [Google Scholar]
- Kutzbach, J.E.; Guetter, P.J.; Behling, P.J.; Selin, R. Simulated Climatic Changes: Results of the Cohmap Climate-Model Experiments. In Global Climates Since the Last Glacial Maximum; University of Minnesota Press: Minneapolis, MN, USA, 1993. [Google Scholar]
- Sun, D. Monsoon and Westerly Circulation Changes Recorded in the Late Cenozoic Aeolian Sequences of Northern China. Glob. Planet. Chang. 2004, 41, 63–80. [Google Scholar]
- Lü, L.; Fang, X.; Lu, H.; Han, Y.; Yang, S.; Li, J.; An, Z. Millennial-scale climate change since the last glaciation recorded by grain sizes of loess deposits on the northeastern Tibetan Plateau. Chin. Sci. Bull. 2004, 49, 1157–1164. [Google Scholar] [CrossRef]
- Vriend, M.; Prins, M.A.; Buylaert, J.-P.; Vandenberghe, J.; Lu, H. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle. Quat. Int. 2011, 240, 167–180. [Google Scholar] [CrossRef]
- Liu, X.J.; Xiao, G.; Chongyi, E.; Li, X.; Lai, Z.; Yu, L.; Wang, Z. Accumulation and erosion of aeolian sediments in the northeastern Qinghai-Tibetan Plateau and implications for provenance to the Chinese Loess Plateau. J. Asian Earth Sci. 2017, 135, 166–174. [Google Scholar] [CrossRef]
- Liu, L.; Yang, S.; Cheng, T.; Liu, X.; Luo, Y.; Liu, N.; Chen, H.; Chen, Z.; Li, P.; Liu, W. Chronology and dust mass accumulation history of the Wenchuan loess on eastern Tibetan Plateau since the last glacial. Aeolian Res. 2021, 53, 100748. [Google Scholar] [CrossRef]
- Sime, L.C.; Kohfeld, K.E.; Le Quéré, C.; Wolff, E.W.; de Boer, A.M.; Graham, R.M.; Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model-data comparison. Quat. Sci. Rev. 2013, 64, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Ranov, V.; Yang, S.; Finaev, A.; Han, J.; Wang, G. The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet. Sci. Lett. 2002, 200, 387–400. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, D.; Lang, X.M. Northern Westerlies During the Last Glacial Maximum: Results from Cmip5 Simulations. J. Clim. 2018, 31, 1135–1153. [Google Scholar] [CrossRef]
- Laîné, A.; Kageyama, M.; Salas-Mélia, D.; Voldoire, A.; Rivière, G.; Ramstein, G.; Planton, S.; Tyteca, S.; Peterschmitt, J.Y. Northern Hemisphere Storm Tracks During the Last Glacial Maximum in the Pmip2 Ocean-Atmosphere Coupled Models: Energetic Study, Seasonal Cycle, Precipitation. Clim. Dyn. 2008, 32, 593–614. [Google Scholar] [CrossRef]
- Chang, H.; An, Z.; Wu, F.; Song, Y.; Qiang, X.; Li, L. Late Miocene-early Pleistocene climate change in the mid-latitude westerlies and their influence on Asian monsoon as constrained by the K/Al ratio record from drill core Ls2 in the Tarim Basin. Catena 2017, 153, 75–82. [Google Scholar] [CrossRef]
- Fang, X.; An, Z.; Clemens, S.C.; Zan, J.; Shi, Z.; Yang, S.; Han, W. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 24729–24734. [Google Scholar] [CrossRef]
- Zhisheng, A.; Guoxiong, W.; Jianping, L.; Youbin, S.; Yimin, L.; Weijian, Z.; Yanjun, C.; Anmin, D.; Li, L.; Jiangyu, M.; et al. Global Monsoon Dynamics and Climate Change. Annu. Rev. Earth Planet. Sci. 2015, 43, 29–77. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, R.; Zhao, Y.; Yang, Y. A 40,000-year record of aridity and dust activity at Lop Nur, Tarim Basin, northwestern China. Quat. Sci. Rev. 2019, 211, 208–221. [Google Scholar] [CrossRef]
- Nottebaum, V.; Stauch, G.; Hartmann, K.; Zhang, J.; Lehmkuhl, F. Unmixed Loess Grain Size Populations Along the Northern Qilian Shan (China): Relationships between Geomorphologic, Sedimentologic and Climatic Controls. Quat. Int. 2015, 372, 151–166. [Google Scholar] [CrossRef]
- Ruth, U.; Bigler, M.; Röthlisberger, R.; Siggaard-Andersen, M.-L.; Kipfstuhl, S.; Goto-Azuma, K.; Hansson, M.E.; Johnsen, S.J.; Lu, H.; Steffensen, J.P. Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate. Geophys. Res. Lett. 2007, 34, L03706. [Google Scholar] [CrossRef] [Green Version]
- Svensson, A.; Biscaye, P.E.; Grousset, F.E. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res. Atmos. 2000, 105, 4637–4656. [Google Scholar] [CrossRef]
- Újvári, G.; Klötzli, U.; Stevens, T.; Svensson, A.; Ludwig, P.; Vennemann, T.; Gier, S.; Horschinegg, M.; Palcsu, L.; Hippler, D.; et al. Greenland Ice Core Record of Last Glacial Dust Sources and Atmospheric Circulation. J. Geophys. Res. Atmos. 2022, 127, e2022JD036597. [Google Scholar] [CrossRef]
- Wei, T.; Brahney, J.; Dong, Z.; Kang, S.; Zong, C.; Guo, J.; Yang, L.; Qin, X. Hf–Nd–Sr Isotopic Composition of the Tibetan Plateau Dust as a Fingerprint for Regional to Hemispherical Transport. Environ. Sci. Technol. 2021, 55, 10121–10132. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic Delta O-18 Records. Paleoceanography 2005, 20, PA1003. [Google Scholar]
- Jouzel, J.; Alley, R.B.; Cuffey, K.M.; Dansgaard, W.; Grootes, P.; Hoffmann, G.; Johnsen, S.J.; Koster, R.; Peel, D.; Shuman, C.A.; et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. Ocean. 1997, 102, 26471–26487. [Google Scholar] [CrossRef]
- Bereiter, B.; Eggleston, S.; Schmitt, J.; Nehrbass-Ahles, C.; Stocker, T.F.; Fischer, H.; Kipfstuhl, S.; Chappellaz, J. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 2015, 42, 542–549. [Google Scholar] [CrossRef]
- Ruddiman, W.F. Orbital Insolation, Ice Volume, and Greenhouse Gases. Quat. Sci. Rev. 2003, 22, 1597–1629. [Google Scholar] [CrossRef]
- Berge, A. The Role of Co2, Sea Level, and Vegetation During the Milankovitch-Forced Glacial-Interglacial Cycles. In Geosphere-Biosphere Interactions and Climate; Hammer, C.U., Bengtsson, L.O., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 119–146. [Google Scholar]
- Duan, F.; An, C.; Wang, W.; Herzschuh, U.; Zhang, M.; Zhang, H.; Liu, Y.; Zhao, Y.; Li, G. Dating of a late Quaternary loess section from the northern slope of the Tianshan Mountains (Xinjiang, China) and its paleoenvironmental significance. Quat. Int. 2020, 544, 104–112. [Google Scholar] [CrossRef]
- Hou, K.; Qian, H.; Zhang, Y.T.; Zhang, Q.Y.; Qu, W.G. New insights into loess formation on the southern margin of the Chinese Loess Plateau. Catena 2021, 204, 105444. [Google Scholar] [CrossRef]
- Jiang, H.C.; Wan, S.M.; Ma, X.L.; Zhong, N.; Zhao, D.B. End-member modeling of the grain-size record of Sikouzi fine sediments in Ningxia (China) and implications for temperature control of Neogene evolution of East Asian winter monsoon. PLoS ONE 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.; Xu, S.; Han, M.; Chen, H.; Miao, X.; Kong, X.; Jia, G. Application of grain size endmember analysis in the study of dust accumulation processes: A case study of loess in Shandong Province, East China. Sediment. Geol. 2021, 416, 105868. [Google Scholar] [CrossRef]
- Li, X.; Peng, T.; Ma, Z.; Li, M.; Li, P.; Feng, Z.; Guo, B.; Yu, H.; Ye, X.; Zhang, J.; et al. The Sources and Transport Dynamics of Eolian Sediments in the NE Tibetan Plateau Since 6.7 Ma. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008682. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Pan, F.; Yang, B.; Tang, Y.; Bi, Y.; Li, T.; Yue, L.; Wingate, M.T. Late Neogene aridification and wind patterns in the Asian interior: Insight from the grain-size of eolian deposits in Altun Shan, northern Tibetan Plateau. Palaeogeogr. Palaeoclim. Palaeoecol. 2018, 511, 532–540. [Google Scholar] [CrossRef]
Mode (μm) | Median (μm) | Mean (μm) | Sigma (μm) | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
EM 1 | 1.41 | 1.78 | 1.92 | 2.59 | 0.15 | 0.96 |
EM 2 | 7.10 | 7.35 | 7.50 | 2.03 | 0.06 | 0.96 |
EM 3 | 39.91 | 32.96 | 31.73 | 1.80 | −0.126 | 1.01 |
EM 4 | 56.37 | 53.32 | 52.40 | 1.71 | −0.06 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhou, J.; Chen, Z.; Li, P.; Wen, C.; Xu, X.; Li, Q. Westerly Variations in the Eastern Tibetan Plateau since the Last Interglacial Revealed by the Grain-Size Records of the Ganzi Loess. Atmosphere 2023, 14, 238. https://doi.org/10.3390/atmos14020238
Yang S, Zhou J, Chen Z, Li P, Wen C, Xu X, Li Q. Westerly Variations in the Eastern Tibetan Plateau since the Last Interglacial Revealed by the Grain-Size Records of the Ganzi Loess. Atmosphere. 2023; 14(2):238. https://doi.org/10.3390/atmos14020238
Chicago/Turabian StyleYang, Shengli, Jiantao Zhou, Zixuan Chen, Pushuang Li, Chen Wen, Xuechao Xu, and Qiong Li. 2023. "Westerly Variations in the Eastern Tibetan Plateau since the Last Interglacial Revealed by the Grain-Size Records of the Ganzi Loess" Atmosphere 14, no. 2: 238. https://doi.org/10.3390/atmos14020238
APA StyleYang, S., Zhou, J., Chen, Z., Li, P., Wen, C., Xu, X., & Li, Q. (2023). Westerly Variations in the Eastern Tibetan Plateau since the Last Interglacial Revealed by the Grain-Size Records of the Ganzi Loess. Atmosphere, 14(2), 238. https://doi.org/10.3390/atmos14020238