Automatic Center Detection of Tropical Cyclone Using Image Processing Based on the Operational Radar Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Image
2.2. Optical Flow Technique
2.3. Radar Image Preprocessing
2.4. ACTION Methodology
2.4.1. Valid Vector Field Calculation
2.4.2. Dense Vector Field Generation
2.4.3. TC Rotation Component Extraction
2.4.4. TC Center Selection
3. Results
3.1. Performance of the ACTION Algorithm
3.2. Image Time Interval Change Effect
3.3. Utilization of ACTION
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kepert, J.D. Tropical Cyclone Structure and Dynamics. In World Scientific Series on Asia-Pacific Weather and Climate; Chan, J.C.L., Kepert, J.D., Eds.; World Scientific Publishing Company: Singapore, 2010; Volume 4, pp. 3–53. [Google Scholar] [CrossRef]
- Wimmers, A.J.; Velden, C.S. Advancements in Objective Multi Satellite Tropical Cyclone Center Fixing. J. Appl. Meteorol. Climatol. 2016, 55, 197–212. [Google Scholar] [CrossRef]
- Jin, S.; Wang, S.; Li, X.; Jiao, L.; Zhang, J.A.; Shen, D. A Salient Region Detection and Pattern Matching-Based Algorithm for Center Detection of a Partially Covered Tropical Cyclone in a SAR Image. IEEE Trans. Geosci. Remote Sens. 2017, 55, 280–291. [Google Scholar] [CrossRef]
- Lam, C.Y. Operational Tropical Cyclone Forecasting from the Perspective of a Small Weather Service. In Proceedings of the ICSU/WMO International Symposium on Tropical Cyclone Disasters, Beijing, China, 12–16 October 1992. [Google Scholar]
- Dvorak, V.F. Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery. Mon. Weather Rev. 1975, 103, 420–430. [Google Scholar] [CrossRef]
- Hasler, A.F.; Palaniappan, K.; Kambhammetu, C.; Black, P.; Uhlhorn, E.; Chesters, D. High Resolution Wind Fields Within the Inner-Core and Eye of a Mature Tropical Cyclone from GOES 1-Min Images. Bull. Am. Meteor. Soc. 1998, 79, 2483–2496. [Google Scholar] [CrossRef]
- Wimmers, A.; Velden, C. Satellite-Based Center-Fixing of Tropical Cyclones; New Automated Approaches. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, USA, 3 May 2004. [Google Scholar]
- Griffin, J.S.; Burpee, R.W.; Marks, F.D., Jr.; Franklin, J.L. Real-Time Airborne Analysis of Aircraft Data Supporting Operational Hurricane Forecasting. Weather Forecast. 1992, 7, 480–490. [Google Scholar] [CrossRef]
- Wood, V.T.; Brown, R.A. Effects of Radar Proximity on Single-Doppler Velocity Signatures of Axisymmetric Rotation and Divergence. Mon. Weather Rev. 1992, 120, 2798–2807. [Google Scholar] [CrossRef]
- Wood, V.T. A Technique for Detecting a Tropical Cyclone Center Using a Doppler Radar. J. Atmos. Ocean. Technol. 1994, 11, 1207–1216. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Chelmow, M.B. Objective Determination of Hurricane Tracks from Aircraft Observations. Mon. Weather Rev. 1982, 110, 1298–1305. [Google Scholar] [CrossRef]
- Dodge, P.; Burpee, R.W.; Marks, F.D., Jr. The Kinematic Structure of a Hurricane with Sea Level Pressure Less Than 900mb. Mon. Weather Rev. 1999, 127, 987–1004. [Google Scholar] [CrossRef]
- Marks, F.D.; Houze, R.A.; Gamache, J.F. Dual-Aircraft Investigation of the Inner Core of Hurricane Norbert. Part I: Kinematic Structure. J. Atmos. Sci. 1992, 49, 919–942. [Google Scholar] [CrossRef]
- Farnebäck, G.; Motion, T.-F. Estimation Based on Polynomial Expansion. In Proceedings of the 13th Scandinavian Conference on Image Analysis (SCIA), Halmstad, Sweden, 29 June 2003. [Google Scholar]
- Chang, P.-L.; Jong-Dao Jou, B.J.-D.; Zhang, J. An Algorithm for Tracking Eyes of Tropical Cyclones. Weather Forecast. 2009, 24, 245–261. [Google Scholar] [CrossRef]
- Lee, W.-C.; Marks, F.D., Jr. Tropical Cyclone Kinematic Structure Retrieved from Single-Doppler Radar Observations. Part Ⅱ: The GBVTD-Simplex Center Finding Algorithm. Mon. Weather Rev. 2000, 128, 1925–1936. [Google Scholar] [CrossRef]
No. | Typhoon | Year | Period |
---|---|---|---|
1 | PRAPIROON | 2018 | 29 Jun–4 Jul |
2 | SOULIK | 2018 | 16–25 Aug |
3 | KONG-REY | 2018 | 29 Sep–7 Oct |
4 | DANAS | 2019 | 16–20 Jul |
5 | FRANCISCO | 2019 | 2–6 Aug |
6 | LINGLING | 2019 | 2–8 Sep |
7 | TAPAH | 2019 | 19–23 Sep |
8 | MITAG | 2019 | 28 Sep–3 Oct |
9 | JANGMI | 2020 | 9–10 Aug |
10 | BAVI | 2020 | 22–27 Aug |
11 | MAYSAK | 2020 | 28 Aug–3 Sep |
12 | HAISHEN | 2020 | 1–7 Sep |
13 | OMAIS | 2021 | 20–24 Aug |
14 | CHANTHU | 2021 | 7–18 Sep |
No. | Typhoon | Year | Detection Rate Within ** Error Distance (%) | ||||
---|---|---|---|---|---|---|---|
** 40 km | ** 30 km | ** 20 km | ** 10 km | ** 5 km | |||
1 | PRAPIROON | 2018 | 56.6 | 35.7 | 16.3 | 3.1 | 0.0 |
2 | SOULIK | 2018 | 87.8 | 72.3 | 33.5 | 8.6 | 2.5 |
3 | KONG-REY | 2018 | 76.6 | 48.7 | 25.2 | 9.0 | 0.9 |
4 | DANAS | 2019 | 83.2 | 61.8 | 31.5 | 7.9 | 1.1 |
5 | FRANCISCO | 2019 | 87.4 | 54.0 | 25.3 | 5.8 | 1.2 |
6 | LINGLING | 2019 | 51.8 | 33.3 | 13.5 | 5.0 | 0.7 |
7 | TAPAH | 2019 | 71.1 | 51.8 | 25.3 | 10.8 | 2.4 |
8 | MITAG | 2019 | 57.2 | 29.5 | 4.6 | 0.6 | 0.0 |
9 | JANGMI | 2020 | 100.0 | 96.6 | 72.4 | 27.6 | 6.9 |
10 | BAVI | 2020 | 88.1 | 71.9 | 58.1 | 21.3 | 1.3 |
11 | MAYSAK | 2020 | 89.9 | 83.7 | 48.8 | 7.0 | 0.0 |
12 | HAISHEN | 2020 | 100.0 | 64.5 | 26.3 | 6.6 | 1.3 |
13 | OMAIS | 2021 | 96.5 | 72.1 | 33.7 | 2.3 | 0.0 |
14 | CHANTHU | 2021 | 85.3 | 75.3 | 54.7 | 8.0 | 0.7 |
Mean: | 80.8 | 60.8 | 33.5 | 8.8 | 1.4 |
Image Interval | Typhoon | Year | Detection Rate within ** Error Distance (%) | ||||
---|---|---|---|---|---|---|---|
** 40 km | ** 30 km | ** 20 km | ** 10 km | ** 5 km | |||
10 min | JANGMI | 2020 | 100.0 | 87.9 | 58.6 | 24.1 | 5.2 |
BAVI | 2020 | 65.0 | 46.9 | 21.9 | 7.5 | 1.9 | |
MAYSAK | 2020 | 76.0 | 60.5 | 21.7 | 1.6 | 0.0 | |
HAISHEN | 2020 | 58.4 | 29.2 | 10.1 | 0.0 | 0.0 | |
OMAIS | 2021 | 70.9 | 47.7 | 15.1 | 0.0 | 0.0 | |
CHANTHU | 2021 | 78.7 | 66.0 | 40.0 | 6.0 | 1.3 | |
Mean: | 74.8 | 56.4 | 27.9 | 6.5 | 1.4 | ||
5 min | JANGMI | 2020 | 100.0 | 96.6 | 72.4 | 27.6 | 6.9 |
BAVI | 2020 | 88.1 | 71.9 | 58.1 | 21.3 | 1.3 | |
MAYSAK | 2020 | 89.9 | 83.7 | 48.8 | 7.0 | 0.0 | |
HAISHEN | 2020 | 100.0 | 64.5 | 26.3 | 6.6 | 1.3 | |
OMAIS | 2021 | 96.5 | 72.1 | 33.7 | 2.3 | 0.0 | |
CHANTHU | 2021 | 85.3 | 75.3 | 54.7 | 8.0 | 0.7 | |
Mean: | 93.3 | 77.3 | 49.0 | 12. | 1.7 | ||
Mean of improved detection rates: | 18.5 | 21.0 | 21.1 | 5.6 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, S.-J.; Gu, J.-Y. Automatic Center Detection of Tropical Cyclone Using Image Processing Based on the Operational Radar Network. Atmosphere 2023, 14, 168. https://doi.org/10.3390/atmos14010168
Mo S-J, Gu J-Y. Automatic Center Detection of Tropical Cyclone Using Image Processing Based on the Operational Radar Network. Atmosphere. 2023; 14(1):168. https://doi.org/10.3390/atmos14010168
Chicago/Turabian StyleMo, Sun-Jin, and Ji-Young Gu. 2023. "Automatic Center Detection of Tropical Cyclone Using Image Processing Based on the Operational Radar Network" Atmosphere 14, no. 1: 168. https://doi.org/10.3390/atmos14010168
APA StyleMo, S. -J., & Gu, J. -Y. (2023). Automatic Center Detection of Tropical Cyclone Using Image Processing Based on the Operational Radar Network. Atmosphere, 14(1), 168. https://doi.org/10.3390/atmos14010168