Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area Location
2.2. Data Classification and Source
2.3. Establishment of the Ozone Concentration Model
2.4. Performance Metrics
3. Results and Discussion
3.1. Results of the Ozone Concentration in Urumqi City
3.2. Results of the Ozone Concentration in Hotan City
3.3. Results of the Ozone Concentration in Dushanzi District
3.4. Comparison of the Simulation Results
3.5. Simulation Application of Three Models
3.6. Limitations and the Next Research Plan
4. Conclusions
- (1)
- The simulation results of the GA-BP neural network model outperformed those of the BP, MLR, RF, and LSTM models in terms of accurately analyzing the relationships between the five input data categories (temperature, humidity, wind speed, wind direction, and visibility) and output data (ozone concentration). The GA-BP neural network was better fitted because the weights and thresholds of the BP neural network were optimized by the genetic algorithm. Among the three regions, Urumqi has the largest anthropogenic influence and the most complex factors affecting ozone generation because it is in an urban area, which leads to the largest relative error (16%) in the model of Urumqi, among the three regions. The R2 values between the real and simulated ozone concentrations in Urumqi were 0.92, 0.93, and 0.94 in the Hotan and Dushanzi districts, respectively. This result indicates that the GA-BP neural network model is more suitable for ozone concentration simulation in urban areas, dusty areas, and industrial areas in Xinjiang, China. The ozone concentration simulation model constructed by the artificial GA-BP neural network has good generalization ability, high generality, and good objectivity and has practical application value.
- (2)
- Under the same wind speed, humidity, visibility, temperature, and wind direction, the ozone concentration data output from the GA-BP neural network models in the Urumqi, Hotan, and Dushanzi districts were significantly different. The highest simulated values of ozone concentration were the Dushanzi District (228.4 μg/m3) > Urumqi City (173.5 μg/m3) > Hotan City (114.3 μg/m3). In terms of the number of exceedance days, the ranking of exceedance days within 100 days was Dushanzi District (14 days) > Urumqi City (3 days) > Hotan City (0 days). Under the same meteorological and atmospheric conditions, the ozone concentrations in Dushanzi were at greater risk of pollution than in Hotan and Urumqi. This is because the Dushanzi district is an industrial area and factories in the area emit a large amount of the precursors (VOCs and NOx) needed to generate ozone, causing more serious ozone pollution in the area. Urumqi city also needs to be alerted to the ozone problem because of the high anthropogenic emissions of precursors in the urban area and the topographic factors limiting the dispersion of pollutants due to the mountains on three sides. In the Hotan city area, due to the higher wind speed, pollutants are more easily diffused; therefore, the problem of ozone pollution is less severe. It is recommended that the Dushanzi District should adopt emission reduction measures to reduce VOC and NOx emissions and ozone pollution in the area.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canella, R.; Roberta, B.; Cavicchio, C.; Cervellati, F.; Martini, M.; Muresan, X.M.; Valacchi, G. Tropospheric ozone effects on chlorine current in lung epithelial cells: An electrophysiological approach. Free. Radic. Biol. Med. 2016, 96, S58–S59. [Google Scholar] [CrossRef]
- U.S. EPA. Health Risk and Exposure Assessment for Ozone Final Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- Rider, C.F.; Carlsten, C. Air pollution and DNA methylation: Effects of exposure in humans. Clin. Epigenetics 2019, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, T.; Xin, Y.; Yin, X.; Qi, J.; Wang, Y.; Han, M.; Zhao, S. Atmospheric ozone:Natural distribution, formation potential and effects on health: A review. Sci. Technol. Rev. 2018, 36, 39–47. [Google Scholar]
- Fu, T.M.; Tian, H. Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps. Curr. Pollut. Rep. 2019, 5, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.; Arneth, A.; Mills, G.; Solberg, S.; Uddling, J. Ozone—The persistent menace: Interactions with the N cycle and climate change. Curr. Opin. Environ. Sustain. 2014, 9–10, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Aiping, D.; Weiqing, L.; Xue, Y.; Center, J.E.M. Analysis on Change of Primary Pollutant in Ambient Air of Jiangsu Province during 2013 and 2017. Environ. Sci. Manag. 2017, 12, 19–22. [Google Scholar]
- Shen, J.; Huang, X.; Wang, Y.; Ye, S.; Pan, Y.; Chen, D.; Chen, H.; Ou, Y.; Lu, X.; Wang, Z. Study on ozone pollution characteristics and source apportionment in Guangdong Province. Acta Sci. Circumst. 2017, 37, 4449–4457. [Google Scholar]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Li, P.; Yuan, X.; Gao, F.; Jiang, L.; Dai, L. Progress in ecological and environmental effects of ground-level O3 in China. Acta Ecol. Sin. 2018, 38, 1530–1541. [Google Scholar]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R.; Dentener, F.; Van Dingenen, R.; Estep, K.; Amini, H.; Apte, J.; et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 2016, 50, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yan, M.; Ma, W.; Ban, J.; Liu, T.; Lin, H.; Liu, Z. Short-term effects of multiple ozone metrics on daily mortality in a megacity of China. Environ. Sci. Pollut. Res. 2015, 22, 8738–8746. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, J.; Cao, J.; Gao, R.; Ren, Y.; Bi, F.; Wu, Z.; Chai, F.; Li, H. Process and Experience of Ozone Pollution Prevention and Control in Europe and Enlightenment to China. Res. Environ. Sci. 2021, 34, 890–901. [Google Scholar]
- Worden, H.M.; Bowman, K.W.; Worden, J.R.; Eldering, A.; Beer, R. Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nat. Geosci. 2008, 1, 305–308. [Google Scholar] [CrossRef]
- Silva, R.A.; West, J.J.; Zhang, Y.Q.; Anenberg, S.C.; Lamarque, J.F.; Shindell, D.T.; Collins, W.J.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; et al. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 2013, 8, 034005. [Google Scholar] [CrossRef]
- Chen, Y.; Beig, G.; Archer-Nicholls, S.; Drysdale, W.; Acton, W.J.F.; Lowe, D.; Nelson, B.; Lee, J.; Ran, L.; Wang, Y.; et al. Avoiding high ozone pollution in Delhi, India. Faraday Discuss. 2021, 226, 502–514. [Google Scholar] [CrossRef]
- Fujita, E.M.; Campbell, D.E.; Stockwell, W.R.; Saunders, E.; Fitzgerald, R.; Perea, R. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. J. Air Waste Manag. Assoc. 2016, 66, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Calvert, J.G.; Orlando, J.J.; Stockwell, W.R.; Wallington, T.J. The Mechanisms of Reactions Influencing Atmospheric Ozone; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2016, 575, 1582–1596. [Google Scholar] [CrossRef]
- Xiao, X.; Cohan, D.S.; Byun, D.W.; Ngan, F. Highly nonlinear ozone formation in the Houston region and implications for emission controls. J. Geophys. Res. Atmos. 2010, 115, D23309. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-Y.; Chen, Q.; Guo, W.-K.; Zhang, R.-X.; Xia, J.-Q. Nonlinear Response Characteristics and Control Scheme for Ozone and Its Precursors Based on Orthogonal Experimental Methods. Huan Jing Ke Xue 2021, 42, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, J.; Guo, J.; Jiang, Z.; Liao, H. The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Sci. Total Environ. 2020, 735, 139559. [Google Scholar] [CrossRef]
- Putra, J.C.P.; Safrilah; Ihsan, M. The Prediction of Indoor Air Quality in Office Room Using Artificial Neural Network. In Proceedings of the 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA), Surakarta, Indonesia, 13–14 December 2017. [Google Scholar]
- Lei, L.; Chen, W.; Xue, Y.; Liu, W. A comprehensive evaluation method for indoor air quality of buildings based on rough sets and a wavelet neural network. Build. Environ. 2019, 162, 106296. [Google Scholar] [CrossRef]
- Huang, Y.; Xiang, Y.X.; Zhao, R.X.; Cheng, Z. Air Quality Prediction Using Improved PSO-BP Neural Network. IEEE Access 2020, 8, 99346–99353. [Google Scholar] [CrossRef]
- Du, S.D.; Li, T.R.; Yang, Y.; Horng, S.J. Deep Air Quality Forecasting Using Hybrid Deep Learning Framework. IEEE Trans. Knowl. Data Eng. 2021, 33, 2412–2424. [Google Scholar] [CrossRef]
- Liao, Q.; Zhu, M.M.; Wu, L.; Pan, X.L.; Tang, X.; Wang, Z.F. Deep Learning for Air Quality Forecasts: A Review. Curr. Pollut. Rep. 2020, 6, 399–409. [Google Scholar] [CrossRef]
- Wan, X.-L.; Yang, F.-L.; Wang, H.-Q. The approach of artificial neural network applied in ambient ozone forecast. China Environ. Sci. 2003, 23, 110–112. [Google Scholar]
- Xing, J.; Zheng, S.; Li, S.; Huang, L.; Wang, X.; Kelly, J.T.; Wang, S.; Liu, C.; Jang, C.; Zhu, Y. Mimicking atmospheric photochemical modeling with a deep neural network. Atmos. Res. 2022, 265, 105919. [Google Scholar] [CrossRef]
- Cheng, Y.; He, L.-Y.; Huang, X.-F. Development of a high-performance machine learning model to predict ground ozone pollution in typical cities of China. J. Environ. Manag. 2021, 299, 113670. [Google Scholar] [CrossRef]
- Hur, S.K.; Oh, H.R.; Ho, C.H.; Kim, J.; Song, C.K.; Chang, L.S.; Lee, J.B. Evaluating the predictability of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns. Environ. Pollut. 2016, 218, 1324–1333. [Google Scholar] [CrossRef]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Di Tommaso, S.; Colangeli, C.; Rosatelli, G.; Di Carlo, P. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Eslami, E.; Choi, Y.; Lops, Y.; Sayeed, A. A real-time hourly ozone prediction system using deep convolutional neural network. Neural Comput. Appl. 2019, 32, 8783–8797. [Google Scholar] [CrossRef] [Green Version]
- Adnan, R.M.; Mostafa, R.R.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Heddam, S. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Comput. Electron. Agric. 2021, 191, 106541. [Google Scholar] [CrossRef]
- Adnan, R.M.; Kisi, O.; Mostafa, R.R.; Ahmed, A.N.; El-Shafie, A. The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction. Hydrol. Sci. J. 2022, 67, 161–174. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Elbeltagi, A.; Yaseen, Z.M.; Shahid, S.; Kisi, O. Development of new machine learning model for streamflow prediction: Case studies in Pakistan. Stoch. Environ. Res. Risk Assess. 2022, 36, 999–1033. [Google Scholar] [CrossRef]
- Grefenstette, J.J. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Song, Y.; Wang, F.; Chen, X. An improved genetic algorithm for numerical function optimization. Appl. Intell. 2019, 49, 1880–1902. [Google Scholar] [CrossRef]
- Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.-X.; Chen, W.; Kougias, I.; Kazakis, N. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 2018, 621, 1124–1141. [Google Scholar] [CrossRef]
- Seyedpour, S.; Kirmizakis, P.; Brennan, P.; Doherty, R.; Ricken, T. Optimal remediation design and simulation of groundwater flow coupled to contaminant transport using genetic algorithm and radial point collocation method (RPCM). Sci. Total Environ. 2019, 669, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhu, Y.; Kelly, J.T.; Jang, C.; Wang, S.; Xing, J.; Chiang, P.-C.; Fan, S.; Zhao, X.; Yu, L. Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning. Sci. Total Environ. 2020, 722, 137701. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ding, X.; Talifu, D.; Wang, X.M.; Abulizi, A.; Maihemuti, M.; Rekefu, S. Humidity and PM2.5 composition determine atmospheric light extinction in the arid region of northwest China. J. Environ. Sci. 2021, 100, 279–286. [Google Scholar] [CrossRef]
- Turap, Y.; Talifu, D.; Wang, X.M.; Abulizi, A.; Maihemuti, M.; Tursun, Y.; Ding, X.; Aierken, T.; Rekefu, S. Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmos. Res. 2019, 218, 257–268. [Google Scholar] [CrossRef]
- Liu, H.B.; Wang, X.M.; Talifu, D.; Ding, X.; Abulizi, A.; Tursun, Y.; An, J.Q.; Li, K.J.; Luo, P.; Xie, X.X. Distribution and sources of PM2.5-bound free silica in the atmosphere of hyper-arid regions in Hotan, North-West China. Sci. Total Environ. 2022, 810, 152368. [Google Scholar] [CrossRef]
- Gupta, J.N.; Sexton, R.S. Comparing backpropagation with a genetic algorithm for neural network training. Omega 1999, 27, 679–684. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, W.; Sun, D.; Zhang, L. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification. Atmos. Environ. 2011, 45, 1979–1985. [Google Scholar] [CrossRef]
- Yu, S.; Guo, X.; Zhu, K.; Du, J. A neuro-fuzzy GA-BP method of seismic reservoir fuzzy rules extraction. Expert Syst. Appl. 2010, 37, 2037–2042. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, L.-H.; Chen, Y.-L.; Chang, F.M. Evaluating the process of a genetic algorithm to improve the back-propagation network: A Monte Carlo study. Expert Syst. Appl. 2009, 36, 1459–1465. [Google Scholar] [CrossRef]
- Jia, B.; Dong, R.; Du, J. Ozone concentrations prediction in Lanzhou, China, using chaotic artificial neural network. Chemom. Intell. Lab. Syst. 2020, 204, 104098. [Google Scholar] [CrossRef]
- Özbay, B.; Keskin, G.A.; Doğruparmak, Ş.Ç.; Ayberk, S. Predicting tropospheric ozone concentrations in different temporal scales by using multilayer perceptron models. Ecol. Inform. 2011, 6, 242–247. [Google Scholar] [CrossRef]
- Yao, M. Application of improved genetic algorithm in optimizing BP neural networks weights. Comput. Eng. Appl. 2013, 49, 49–54. [Google Scholar]
- Li, X. A comparison between information transfer function sigmoid and tanh on neural. J. Wuhan Univ. Technol 2004, 28, 312–314. [Google Scholar]
- Goudarzi, G.; Hopke, P.K.; Yazdani, M. Forecasting PM2. 5 concentration using artificial neural network and its health effects in Ahvaz, Iran. Chemosphere 2021, 283, 131285. [Google Scholar] [CrossRef] [PubMed]
- Yafouz, A.; Ahmed, A.N.; Zaini, N.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Hybrid deep learning model for ozone concentration prediction: Comprehensive evaluation and comparison with various machine and deep learning algorithms. Eng. Appl. Comput. Fluid Mech. 2021, 15, 902–933. [Google Scholar] [CrossRef]
Name | Unit | |
---|---|---|
Input | Temperature | °C |
Relative Humidity | % | |
Wind direction | ° | |
Wind Speed | m/s | |
Visibility | Km | |
Output | O3 concentration | μg/m3 |
Urumqi | Hotan | Dushanzi | |
---|---|---|---|
Number of Nodes in the Hidden Layer | Mean Square Error | Mean Square Error | Mean Square Error |
3 | 6.0 × 10−4 | 2.9 × 10−4 | 2.9 × 10−4 |
4 | 4.3 × 10−4 | 1.5 × 10−4 | 4.0 × 10−4 |
5 | 7.4 × 10−5 | 1.9 × 10−4 | 4.3 × 10−4 |
6 | 1.9 × 10−4 | 1.4 × 10−4 | 2.4 × 10−4 |
7 | 3.0 × 10−4 | 2.0 × 10−4 | 5.3 × 10−4 |
8 | 1.3 × 10−4 | 1.9 × 10−4 | 3.3 × 10−4 |
9 | 1.2 × 10−4 | 1.7 × 10−4 | 4.1 × 10−4 |
10 | 1.5 × 10−4 | 1.2 × 10−4 | 3.7 × 10−4 |
11 | 2.6 × 10−4 | 1.6 × 10−4 | 2.2 × 10−4 |
12 | 1.1 × 10−4 | 1.3 × 10−4 | 2.1 × 10−4 |
Training Parameters | Settings |
---|---|
Number of training sessions | net1.trainParam.epochs = 1000 |
Learning Rate | net1.trainParam.lr = 0.01 |
Minimum error of training target | net1.trainParam.goal = 0.00001 |
Display frequency | net1.trainParam.show = 25 |
Momentum factor | net1.trainParam.mc = 0.01 |
Minimum performance gradient | net1.trainParam.min_grad = 1 × 10−6 |
Maximum number of failures | net1.trainParam.max_fail = 6 |
Initial population size | PopulationSize_Data = 30 |
Maximum number of evolutionary generations | MaxGenerations_Data = 50 |
Crossover probability | CrossoverFraction_Data = 0.8 |
Mutation probability | MigrationFraction_Data = 0.2 |
R2 | MAE | MSE | RMSE | NRMSE | ||
---|---|---|---|---|---|---|
Urumqi City | GA-BP | 0.92 | 4.31 | 54 | 7.34 | 0.07 |
BP | 0.72 | 10.0 | 180 | 13.4 | 0.13 | |
MLR | 0.67 | 15.5 | 378 | 19.4 | 0.18 | |
RF | 0.85 | 6.8 | 98.7 | 9.9 | 0.09 | |
LSTM | 0.78 | 9.7 | 141 | 11.8 | 0.11 | |
Hotan City | GA-BP | 0.93 | 3.94 | 41 | 6.37 | 0.07 |
BP | 0.65 | 9.93 | 177 | 13.3 | 0.15 | |
MLR | 0.62 | 10.0 | 191 | 13.8 | 0.16 | |
RF | 0.80 | 7.7 | 101 | 10.1 | 0.12 | |
LSTM | 0.74 | 8.5 | 132.7 | 11.5 | 0.13 | |
Dushanzi District | GA-BP | 0.94 | 5.80 | 102 | 10.1 | 0.07 |
BP | 0.83 | 14.3 | 304 | 17.5 | 0.12 | |
MLR | 0.73 | 17.4 | 429 | 20.7 | 0.14 | |
RF | 0.88 | 11.0 | 180 | 13.4 | 0.09 | |
LSTM | 0.85 | 12.2 | 233 | 15.3 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Jiang, K.; Talifu, D.; Gao, B.; Wang, X.; Abulizi, A.; Zhang, X.; Liu, B. Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model. Atmosphere 2023, 14, 160. https://doi.org/10.3390/atmos14010160
Zhao Q, Jiang K, Talifu D, Gao B, Wang X, Abulizi A, Zhang X, Liu B. Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model. Atmosphere. 2023; 14(1):160. https://doi.org/10.3390/atmos14010160
Chicago/Turabian StyleZhao, Qilong, Kui Jiang, Dilinuer Talifu, Bo Gao, Xinming Wang, Abulikemu Abulizi, Xiaohui Zhang, and Bowen Liu. 2023. "Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model" Atmosphere 14, no. 1: 160. https://doi.org/10.3390/atmos14010160
APA StyleZhao, Q., Jiang, K., Talifu, D., Gao, B., Wang, X., Abulizi, A., Zhang, X., & Liu, B. (2023). Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model. Atmosphere, 14(1), 160. https://doi.org/10.3390/atmos14010160