Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions
Abstract
:1. Introduction
2. Materials and Methods
- The firebrands are modeled by a square solution area with dimensions of 0.1 m to 0.01 m;
- It is assumed that the material of the firebrand is modeled in the concept of a continuum mechanics;
- It is assumed that there is no moisture in the firebrand material;
- The convective heat exchange of a firebrand with the environment occurs in accordance with the statement about the same temperature of a forest fire in the area where the firebrand is located;
- It is believed that the thermophysical characteristics of a firebrand and air do not depend on temperature;
- The transport of a firebrand in a forest fire plume and its possible collisions with other firebrands are not considered;
- The pyrolysis of dry organic matter is taken into account based on the kinetic scheme proposed in [75];
- Pyrolysis of dry organic matter is considered as a one-stage process;
- The temperature distribution is described by a non-stationary nonlinear heat equation;
- Soot formation is taken into account according to the kinetic scheme proposed in [76];
- The volume fraction of soot particles is proportional to the volume fraction of dry organic matter decomposed during pyrolysis with dispersion coefficient αs.
3. Results and Discussion
4. Conclusions
- (1)
- A mathematical model of heat and mass transfer in firebrand was developed within the framework of a two-dimensional formulation, taking into account pyrolysis and the formation of soot particles;
- (2)
- A probabilistic criterion for forest fire danger was developed, taking into account the formation of a thunderstorm front during aerosol emission;
- (3)
- Scenario numerical simulation was carried out and the obtained results were analyzed;
- (4)
- Within current research, next probabilities of forest fire occurrence were obtained: 0.2 for surface forest fire, 0.4 for crown forest fire, and 0.148 for fire storm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dayeh, M.A.; Farahat, A.; Ismail-Aldayeh, H.; Abuelgasim, A. Effects of aerosols on lightning activity over the Arabian Peninsula. Atmos. Res. 2021, 261, 105723. [Google Scholar] [CrossRef]
- Orville, R.E.; Henderson, R. Global distribution of midnight lightning: September 1977 to August 1978. Mon. Weather. Rev. 1986, 114, 2640–2653. [Google Scholar] [CrossRef]
- Goodman, S.J.; Christian, H.J., Jr. Global observations of lightning. In Atlas of Satellite Observations Related to Global Change; Gurney, R.J., Foster, J.L., Parkinson, C.L., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 191–219. [Google Scholar]
- Heckman, S.J.; Williams, E.; Boldi, B. Total global lighting inferred from Schumann resonance measurement. J. Geophys. Res. 1998, 103, 31775–31779. [Google Scholar] [CrossRef]
- Williams, E.; Rothkin, K.; Stevenson, D.; Boccippio, D. Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteorol. 2000, 39, 2223–2230. [Google Scholar] [CrossRef]
- Said, R.K.; Inan, U.S.; Cummins, K.L. Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res. 2010, 115, D23108. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Murphy, M.J.; Cummins, K.L.; Pifer, A.E.; Cramer, J.A. Recent evolution of the U.S. National Lightning Detection Network. In Proceedings of the 23rd International Lightning Detection Conference (ILDC), Tucson, AZ, USA, 18–21 March 2014. [Google Scholar]
- Albrecht, R.I.; Goodman, S.J.; Buechler, D.E.; Blakeslee, R.J.; Christian, H.J. Where are the lightning hotspots on Earth. Bull. Am. Meteorol. Soc. 2016, 97, 2051–2068. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Guo, J.; Zhao, C.; Cribb, M. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements. Atmos. Chem. Phys. 2018, 18, 12797–12816. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.L.; Rosenfeld, D.; Kim, K.-M. Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett. 2009, 36, L23805. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 2003, 108, 4005. [Google Scholar] [CrossRef]
- Farias, W.R.G.; Pinto, O., Jr.; Pinto, I.R.C.A.; Naccarato, K. The influence of urban effect on lightning activity: Evidence of weekly cycle. Atmos. Res. 2014, 135–136, 370–373. [Google Scholar] [CrossRef]
- Guo, J.; Deng, M.; Lee, S.S.; Wang, F.; Li, Z.; Zhai, P.; Liu, H.; Lv, W.; Yao, W.; Li, X. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmosphere 2016, 121, 6472–6488. [Google Scholar] [CrossRef]
- Lucas, C.; Zipser, E.J.; Lemone, M.A. Convective available potential energy in the environment of oceanic and continental clouds: Correction and comments. J. Atmos. Sci. 1994, 51, 3829–3830. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.; Nielsen-Gammon, J.; Zhang, R.; Ely, B.; Steiger, S.; Phillips, S.; Allen, S.; Read, W. Enhancement of Cloud-to-Ground Lightning over Houston, Texas. Geophys. Res. Lett. 2001, 28, 2597–2600. [Google Scholar] [CrossRef]
- Williams, E.; Stanfill, S. The physical origin of the land-ocean contrast in lightning activity. Comptes. Rendus. Phys. 2002, 3, 1277–1292. [Google Scholar] [CrossRef]
- Williams, E.R. Lightning and climate: A review. Atmos. Res. 2005, 76, 272–287. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhang, R.; Ghan, S.J.; Lin, Y.; Hu, J.; Pan, B.; Levy, M.; Jiang, J.H.; Molina, M.J. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model. Proc. Nat. Acad. Sci. USA 2014, 111, 6894–6899. [Google Scholar] [CrossRef] [Green Version]
- Koren, I.; Kaufman, Y.J.; Rosenfeld, D.; Remer, L.A.; Rudich, Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. 2005, 32, L14828. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, R.; Mao, R.; Zhang, Y.; Chen, Y.; Ji, Z.; Gong, Y.; Guan, Y. Sources, characteristics and climate impact of light-absorbing aerosols over the Tibetan Plateau. Earth-Science Reviews. 2022, 232, 104111. [Google Scholar] [CrossRef]
- Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Kazantzidis, A. Lightning activity and aerosols in the Mediterranean region. Atmos. Res. 2015, 170, 66–75. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekäs, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef]
- Yuan, T.; Remer, L.A.; Pickering, K.E.; Yu, H. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett. 2011, 38, L04701. [Google Scholar] [CrossRef]
- Thornton, J.A.; Virts, K.S.; Holzworth, R.H.; Mitchell, T. Lightning enhancement over major oceanic shipping lanes. Geophys. Res. Lett. 2017, 44, 9102–9111. [Google Scholar] [CrossRef] [Green Version]
- Varnai, T.; Marshak, A.; Yang, W. Multi-satellite aerosol observations in the vicinity of clouds. Atmos. Chem. Phys. 2013, 13, 3899–3908. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Yuan, T.; Comstock, J.M.; Ghan, S.; Khain, A.; Leung, L.R.; Li, Z.; Martins, V.J.; Ovchinnikov, M. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. 2009, 114, D22206. [Google Scholar] [CrossRef]
- Cziczo, D.J.; Murphy, D.M.; Hudson, P.K.; Thomson, D.S. Single particle measurements of the composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res. 2004, 109, D04201. [Google Scholar]
- van den Heever, S.C.; Carrio, G.; Cotton, W.R.; DeMott, P.J.; Prenni, A.J. Impacts of nucleating aerosol on Florida convection. Part I: Mesoscale simulations. J. Atmos. Sci. 2006, 63, 1752–1775. [Google Scholar] [CrossRef] [Green Version]
- Stolz, D.; Rutledge, S.; Pierce, J.; Heever, S. A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology: Lightning Parameterization from TRMM. J. Geophys. Res. Atmos. 2017, 122, 7461–7492. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.E.; Nazarenko, L.; Luo, Y. Climate effects of black carbon aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Lahav, R.; Khain, A.P.; Pinsky, M. The role of sea-spray in cleansing air pollution over ocean via cloud processes. Science 2002, 297, 1667–1670. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.P.; BenMoshe, N.; Pokrovsky, A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 2008, 65, 1721–1748. [Google Scholar] [CrossRef]
- Khain, A.P.; Leung, L.R.; Lynn, B.; Ghan, S. Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res. 2009, 114, D22203. [Google Scholar] [CrossRef]
- Khain, A.P.; Rosenfeld, D.; Pokrovsky, A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Zhang, R.; Li, G.; Tao, W.-K. Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res. 2007, 112, D14204. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Rudich, Y.; Lahav, R. Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Nat. Acad. Sci. USA 2001, 98, 5975–5980. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.; Gautam, A.S.; Singh, K.; James, E.J.; Brema, J. Investigations on the relationship among lightning, aerosol concentration, and meteorological parameters with specific reference to the wet and hot humid tropical zone of the southern parts of India. Environ. Technol. Innov. 2021, 22, 101414. [Google Scholar] [CrossRef]
- Mushtaq, F.; Lala, M.G.N.; Anand, A. Spatio-temporal variability of lightning activity over J&K region and its relationship with topography, vegetation cover, and absorbing aerosol index (AAI). J. Atmos. Sol. -Terr. Phys. 2018, 179, 281–292. [Google Scholar]
- Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A. Aerosols and lightning activity: The effect of vertical profile and aerosol type. Atmos. Res. 2016, 182, 243–255. [Google Scholar] [CrossRef]
- Murray, N.D.; Orville, R.E.; Huffines, G.R. Effect of pollution from central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett. 2000, 27, 2249–2252. [Google Scholar] [CrossRef]
- Schumacher, V.; Setzer, A.; Saba, M.M.F.; Naccarato, K.P.; Mattos, E.; Justino, F. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agric. For. Meteorol. 2022, 312, 108723. [Google Scholar] [CrossRef]
- Pineda, N.; Montanya, J.; van der Velde, O.A. Characteristics of lightning related to wildfire ignitions in Catalonia. Atmos. Res. 2014, 135–136, 380–387. [Google Scholar] [CrossRef]
- Clarke, H.; Gibson, R.; Cirulis, B.; Bradstock, R.A.; Penman, T.D. Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia. J. Environ. Manage. 2019, 235, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, K.; Taylor, S.W.; Woolford, D.G.; Dean, C.B. Mesoscale spatiotemporal predictive models of daily human- and lightning-caused wildland fire occurrence in British Columbia. Int. J. Wildl. Fire 2019, 29, 11–27. [Google Scholar] [CrossRef]
- Moris, J.V.; Conedera, M.; Nisi, L.; Bernardi, M.; Cesti, G.; Pezzatti, G.B. Lightningcaused fires in the Alps: Identifying the igniting strokes. Agric. For. Meteorol. 2020, 290, 107990. [Google Scholar] [CrossRef]
- Rodríguez-Perez, J.R.; Ordonez, C.; Roca-Pardinas, J.; Vecín-Arias, D.; Dorado, F.C. Evaluating lightning-caused fire occurrence using spatial generalized additive models: A case study in Central Spain. Risk Anal. 2020, 40, 1418–1437. [Google Scholar] [CrossRef] [PubMed]
- Nampak, H.; Love, P.; Fox-Hughes, P.; Watson, C.; Aryal, J.; Harris, R.M.B. Characterizing spatial and temporal variability of lightning activity associated with wildfire over Tasmania. Australia. Fire 2021, 4, 10. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Chelsea Nagy, R.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Abdollahi, M.; Dewan, A.; Hassan, Q.K. Applicability of remote sensing-based vegetation water content in modeling lightning-caused forest fire occurrences. ISPRS Int. J. Geo-Info. 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, L.N.; Russell, L.M. Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires. Atmos. Environ. 2010, 44, 4142–4154. [Google Scholar] [CrossRef]
- Parka, R.J.; Jacob, D.J.; Logan, J.A. Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States. Atmos. Environ. 2007, 41, 7389–7400. [Google Scholar] [CrossRef]
- Baranovskiy, N.; Kirienko, V. Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation. Processes 2021, 9, 1616. [Google Scholar] [CrossRef]
- Baranovskiy, N.V.; Vyatkina, V.A. Mathematical simulation of inert heating and pyrolysis of forest fuel under the influence of a forest fire front, if the process of sooting is taken into account. Pozharovzryvobezopasnost/Fire Explos. Saf. 2022, 31, 34–44. (In Russian) [Google Scholar] [CrossRef]
- Baranovskiy, N.V.; Zakharevich, A.V. Experimental modeling of spruce needles ignition by a carbonaceous particle heated to high temperatures. For. Sci. Issues 2020, 3 (Suppl. 1), 1–9. [Google Scholar] [CrossRef]
- Filkov, A.; Prohanov, S.; Mueller, E.; Kasymov, D.; Martynov, P.; El Houssami, M.; Thomas, J.; Skowronski, N.; Butler, B.; Gallagher, M.; et al. Investigation of firebrand production during prescribed fires conducted in a pine forest. Proc. Combust. Inst. 2017, 36, 3263–3270. [Google Scholar] [CrossRef] [Green Version]
- Cawson, J.G.; Pickering, B.J.; Filkov, A.I.; Burton, J.E.; Kilinc, M.; Penman, T.D. Predicting ignitability from firebrands in mature wet eucalypt forests. For. Ecol. Manag. 2022, 519, 120315. [Google Scholar] [CrossRef]
- Rivera, J.; Hernandez, N.; Consalvi, J.L.; Reszka, P.; Contreras, J.; Fuentes, A. Ignition of wildland fuels by idealized firebrands. Fire Saf. J. 2021, 120, 103036. [Google Scholar] [CrossRef]
- Baranovskiy, N.V. Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; IGI Global: Hershey, PA, USA, 2020. [Google Scholar] [CrossRef]
- Baranovskiy, N.V. Forest Fire Danger Prediction Using Deterministic-Probabilistic Approach; IGI Global: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Baranovskiy, N. Deterministic-Probabilistic Approach to Predict Lightning-Caused Forest Fires in Mounting Areas. Forecasting 2021, 3, 695–715. [Google Scholar] [CrossRef]
- Wang, X.; Wotton, B.M.; Cantin, A.S.; Parisien, M.-A.; Anderson, K.; Moore, B.; Flannigan, M.D. CFFDRS: An R package for the Canadian Forest Fire Danger Rating System. Ecol. Process. 2017, 6, 5. [Google Scholar] [CrossRef]
- WFAS: Wildland Fire Assessment System. Available online: https://www.wfas.net/ (accessed on 10 October 2022).
- Podolskaya, A.S.; Ershov, D.V.; Shulyak, P. Application of the method for assessing the likelihood of forest fires in ISDM-Rosleskhoz. Mod. Probl. Remote Sens. Earth Space 2011, 8, 118–126. (In Russian) [Google Scholar]
- Muller, M.M.; Vila-Vilardell, L.; Vacik, H. Towards an integrated forest fire danger assessment system for the European Alps. Ecol. Inform. 2020, 60, 101151. [Google Scholar] [CrossRef]
- Miller, C.; Ager, A.A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildland Fire 2013, 22, 1–14. [Google Scholar] [CrossRef]
- Hardy, C.C. Wildland fire danger and risk: Problems, definitions, and context. For. Ecol. Manag. 2005, 211, 73–82. [Google Scholar] [CrossRef]
- Emercom for Republic of Altay. Available online: https://04.mchs.gov.ru/ (accessed on 14 September 2021).
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer, Volume 1, Mathematical Modeling; Wiley: Chichester, UK, 1995. [Google Scholar]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer, Volume 2, The Finite Difference Method; Wiley: Chichester, UK, 1995; 432p. [Google Scholar]
- Samarskii, A.A. The Theory of Difference Schemes; Marcel Dekker, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Samarskii, A.A.; Nikolaev, E.S. Methods for Solving Grid Equations; Nauka: Moscow, Russia, 1978; p. 590. (In Russian) [Google Scholar]
- Bakhvalov, N.S.; Zhidkov, N.P.; Kobelkov, G.M. Numerical Methods; Binom: Moscow, Russia, 2004; p. 636. (In Russian) [Google Scholar]
- Wentzel, E.S. Theory of Probability; ACADEMIA: Moscow, Russia, 2003; p. 571. (In Russian) [Google Scholar]
- Grishin, A.M. Mathematical Modeling of Forest Fires and New Ways to Fighting Them; Science: Novosibirsk, Russia, 1992; p. 401. (In Russian) [Google Scholar]
- Grishin, A.M. A.M. A general mathematical model of forest fires and its application to the protection and safeguarding of forests. In Conjugate Problems of Mechanics and Ecology: Selected Reports of International Conference.; Publishing House of the Tomsk State University: Tomsk, Russia, 2000; pp. 88–137. (In Russian) [Google Scholar]
- Baranovskiy, N.; Malinin, A. Mathematical Simulation of Forest Fire Impact on Industrial Facilities and Wood-Based Buildings. Sustainability 2020, 12, 5475. [Google Scholar] [CrossRef]
- Ayubov, E.N.; Luk’yanovich, A.V.; Novikov, O.N.; Norseeva, M.E.; Omelchenko, M.V.; Prischepov, D.Z.; Skubak, N.Y.; Tverdokhlebov, N.V.; Tarakanov, A.Y. Fires and Explosions; FGBU VNII GOChS (FTs): Moscow, Russia, 2017; p. 144. (In Russian) [Google Scholar]
- Scientific and Applied Reference Book on the Climate of the USSR. Series 3. Long-Term Data, Parts 1–6, Issue 20, (Tomsk, Novosibirsk, Kemerovo Regions and Altai Territory); Gidrometeoizdat: St. Petersburg, Russia, 1993; p. 718. (In Russian)
- Abaimov, V.F. Dendrology; Academy: Moscow, Russia, 2009; p. 368. (In Russian) [Google Scholar]
- Pankratov, B.M.; Polezhaev, Y.V.; Rudko, A.K. Interaction of Materials with Gas Flows; Zuev, V.S., Ed.; Mashinostroenie: Moscow, Russia, 1975; p. 224. (In Russian) [Google Scholar]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Maranghides, A.; Mell, W.; Yang, J.C. Experimental investigation of firebrands: Generation and ignition of fuel beds. Fire Saf. J. 2008, 43, 226–233. [Google Scholar] [CrossRef]
- Yoshioka, H.; Hayashi, Y.; Masuda, H.; Noguchi, T. Real-scale fire wind tunnel experiment on generation of firebrands from a house on fire. Fire Sci. Technol. 2004, 23, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Manzello, S.L.; Shields, J.R.; Cleary, T.G.; Maranghides, A.; Mell, W.E.; Yang, J.C.; Hayashi, Y.; Nii, D.; Kurita, T. On the development and characterization of a firebrand generator. Fire Saf. J. 2008, 43, 258–268. [Google Scholar] [CrossRef]
- Tolstykh, M.; Goyman, G.; Fadeev, R.; Travova, S.; Shashkin, V. Development of the global multiscale atmosphere model: Computational aspects. J. Phys. Conf. Ser. 2021, 1740, 012074. [Google Scholar] [CrossRef]
- Nesterov, V.G. Combustibility of the Forest and Methods of Its Determination; Goslesbumizdat: Moscow, Russia, 1949; p. 76. (In Russian) [Google Scholar]
- Baranovskiy, N.V.; Zakharevich, A.V.; Osotova, D.S. Experimental study of pine forest fuel layer ignition by the steel heated particle. EPJ Web Conf. 2015, 82, 01020. [Google Scholar] [CrossRef] [Green Version]
- Baranovskiy, N.V.; Zakharevich, A.V. Experimental research of grassy rags ignition by heated up to high temperatures carbon particle. In Multifunctional Materials and Modeling; Apple Academic Press: Ontario, Canada, 2015; pp. 11–18. [Google Scholar]
- Grishin, A.; Golovanov, A.; Kolesnikov, A.A.; Strokatov, A.A.; Tsvyk, R. Experimental study of thermal and fire tornados. Dokl. Phys. 2005, 50, 66–68. [Google Scholar] [CrossRef]
- Kataeva, L.Y. Application of the Concepts and Methods of Fluid and Gas Mechanics to Solve Some Urgent Problems of Ecology. Ph.D. Thesis, Tomsk State University, Tomsk, Russia, 2000; p. 180. (In Russian). [Google Scholar]
- Tolstykh, M.; Fadeev, R.; Shashkin, V.; Goyman, G. Improving the Computational Efficiency of the Global SL-AV Numerical Weather Prediction Model. Supercomput. Front. Innov. 2021, 8, 11–23. [Google Scholar] [CrossRef]
- Nagorskiy, M.; Kabanov, M.V.; Pustovalov, K.N. The Influence of Smoke from Forest Fires on the Meteorological and Electrical Characteristics of the Atmosphere. In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; Baranovskiy, N., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 322–344. [Google Scholar] [CrossRef]
- Nieto, H.; Aguado, I.; García, M.; Chuvieco, E. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agric. For. Meteorol. 2012, 162–163, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.W.; Alexander, M.E. Science, technology and human factors in fire danger rating: The Canadian experience. Int. J. Wildland Fire 2006, 15, 121–135. [Google Scholar] [CrossRef]
- Baranovskiy, N.V. Thermophysical aspects of prognostic modeling of forest fire danger. Ph.D. Thesis, Tomsk Polytechnic University, Tomsk, Russia, 2012; p. 436. (In Russian). [Google Scholar]
- Delphi. Available online: https://www.embarcadero.com/ru/products/delphi (accessed on 14 August 2022).
- Karanina, S.Y.; Kocheeva, N.A.; Belikova, M.Y.; Baranovskiy, N.V. Analysis of a thunderstorm activity according to WWLLN: A case study. Int. Rev. Electr. Eng. 2018, 13, 69–79. [Google Scholar] [CrossRef]
- Baranovskiy, N.; Zharikova, M. A web-oriented geoinformation system application for forest fire danger in the typical forests of the Ukraine. In Thematic Cartography for the Society; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2014; pp. 13–22. [Google Scholar] [CrossRef]
- Yankovich, K.S.; Yankovich, E.P.; Baranovskiy, N.V. Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study. Math. Probl. Eng. 2019, 2019, 6296417. [Google Scholar] [CrossRef]
Forest Fire Type | Flame Temperature | Heat Transfer Coefficient | Dispersion Coefficient | Forest Fuel |
---|---|---|---|---|
Low-intensity Surface Fire | 900 K | 80 | 0.01 0.03 0.05 | Pine Fir Birch |
High-intensity Surface Fire | 1000 K | 150 | 0.01 0.03 0.05 | Pine Fir Birch |
Crown Fire | 1100 K | 180 | 0.01 0.03 0.05 | Pine Fir Birch |
Fire Storm | 1200 K | 200 | 0.01 0.03 0.05 | Pine Fir Birch |
Forest Fire Type | P(L) | P(FF) |
---|---|---|
Surface forest fire | 1 | 0.2 |
Crown forest fire | 1 | 0.4 |
Fire storm | 0.988 | 0.148 |
Option | P(L) | P(FF) |
---|---|---|
I | 0.4095 | 0.0614 |
II | 0.9344 | 0.1402 |
III | 0.9927 | 0.1489 |
IV | 0.9992 | 0.1499 |
V | 0.9688 | 0.1453 |
N | Conditions | Current Method | Nesterov Index | Method [61] |
---|---|---|---|---|
1 | Surface forest fire | 0.2 | 0 | 0.2 |
2 | Crown forest fire | 0.4 | 0 | 0.2 |
3 | Fire storm | 0.148 | 0 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranovskiy, N.V.; Vyatkina, V.A.; Chernyshov, A.M. Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions. Atmosphere 2023, 14, 29. https://doi.org/10.3390/atmos14010029
Baranovskiy NV, Vyatkina VA, Chernyshov AM. Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions. Atmosphere. 2023; 14(1):29. https://doi.org/10.3390/atmos14010029
Chicago/Turabian StyleBaranovskiy, Nikolay Viktorovich, Viktoriya Andreevna Vyatkina, and Aleksey Mikhailovich Chernyshov. 2023. "Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions" Atmosphere 14, no. 1: 29. https://doi.org/10.3390/atmos14010029
APA StyleBaranovskiy, N. V., Vyatkina, V. A., & Chernyshov, A. M. (2023). Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions. Atmosphere, 14(1), 29. https://doi.org/10.3390/atmos14010029