HONO Formation from the Oxidation Reactions of ClO, NO, and Water in the Gas-Phase and at the Air-Water Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Born–Oppenheimer Molecular Dynamics (BOMD) Simulation
2.2. Metadynamics (MTD) Simulation
2.3. Quantum Chemistry Calculations
2.4. Rate Constant Calculations
3. Results and Discussion
3.1. HONO Formation from the Monohydrated System in the Gas-Phase
3.2. HONO Formation from the Dihydrated System in the Gas-Phase
3.3. HONO Formation at the Air-Water Interface
3.4. Atmospheric Implication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive Nitrogen Chemistry in Aerosol Water as a Source of Sulfate during Haze Events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Zamora, M.L.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent Sulfate Formation from London Fog to Chinese Haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Wang, T.; Zhang, L.; Li, Q.; Wang, Z.; Xia, M.; Yun, H.; Wang, W.; Yu, C.; Yue, D.; et al. The Significant Contribution of HONO to Secondary Pollutants during a Severe Winter Pollution Event in Southern China. Atmos. Chem. Phys. 2019, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Alicke, B.; Platt, U.; Stutz, J. Impact of Nitrous Acid Photolysis on the Total Hydroxyl Radical Budget during the Limitation of Oxidant Production/Pianura Padana Produzione Di Ozono Study in Milan. J. Geophys. Res. Atmos. 2002, 107, 8196. [Google Scholar] [CrossRef]
- Kleffmann, J. Daytime Sources of Nitrous Acid (HONO) in the Atmospheric Boundary Layer. ChemPhysChem 2007, 8, 1137–1144. [Google Scholar] [CrossRef]
- Yang, Q.; Su, H.; Li, X.; Cheng, Y.; Lu, K.; Cheng, P.; Gu, J.; Guo, S.; Hu, M.; Zeng, L.; et al. Daytime HONO Formation in the Suburban Area of the Megacity Beijing, China. Sci. China Chem. 2014, 57, 1032–1042. [Google Scholar] [CrossRef]
- Hendrick, F.; Clémer, K.; Wang, P.; De Mazière, M.; Fayt, C.; Gielen, C.; Hermans, C.; Ma, J.Z.; Pinardi, G.; Stavrakou, T.; et al. Four Years of Ground-Based MAX-DOAS Observations of HONO and NO2 in the Beijing Area. Atmos. Chem. Phys. 2014, 14, 765–781. [Google Scholar] [CrossRef] [Green Version]
- Beine, H.J.; Dominé, F.; Simpson, W.; Honrath, R.E.; Sparapani, R.; Zhou, X.; King, M. Snow-Pile and Chamber Experiments during the Polar Sunrise Experiment ‘Alert 2000’: Exploration of Nitrogen Chemistry. Atmos. Environ. 2002, 36, 2707–2719. [Google Scholar] [CrossRef]
- Cui, L.; Li, R.; Fu, H.; Li, Q.; Zhang, L.; George, C.; Chen, J. Formation Features of Nitrous Acid in the Offshore Area of the East China Sea. Sci. Total Environ. 2019, 682, 138–150. [Google Scholar] [CrossRef]
- Li, X.; Brauers, T.; Häseler, R.; Bohn, B.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Lou, S.; Lu, K.D.; Rohrer, F.; et al. Exploring the Atmospheric Chemistry of Nitrous Acid (HONO) at a Rural Site in Southern China. Atmos. Chem. Phys. 2012, 12, 1497–1513. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Ma, Z.; Yang, S.; Yao, D.; Zhao, S.; Hu, B.; Tang, G.; Sun, J.; Cheng, M.; et al. Detailed Budget Analysis of HONO in Beijing, China: Implication on Atmosphere Oxidation Capacity in Polluted Megacity. Atmos. Environ. 2021, 244, 117957. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, X.; Bertman, S.; Tang, D.; Alaghmand, M.; Shepson, P.B.; Carroll, M.A. Measurements of Ambient HONO Concentrations and Vertical HONO Flux above a Northern Michigan Forest Canopy. Atmos. Chem. Phys. 2012, 12, 8285–8296. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Cheng, P.; Li, H.; Yang, W.; Han, B.; Song, W.; Hu, W.; Wang, X.; Yuan, B.; Shao, M.; et al. Budget of Nitrous Acid (HONO) at an Urban Site in the Fall Season of Guangzhou, China. Atmos. Chem. Phys. 2022, 22, 8951–8971. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Zhan, H.; Zhang, Y.; Zhang, X.; Li, W.; Tong, S.; Pei, C.; Wang, Y.; Chen, Y.; et al. Contribution of Vehicle Emission and NO2 Surface Conversion to Nitrous Acid (HONO) in Urban Environments: Implications from Tests in a Tunnel. Environ. Sci. Technol. 2021, 55, 15616–15624. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, T.; Wu, J.; Xue, L.; Chan, J.; Zha, Q.; Zhou, S.; Louie, P.K.K.; Luk, C.W.Y. Nitrous Acid (HONO) in a Polluted Subtropical Atmosphere: Seasonal Variability, Direct Vehicle Emissions and Heterogeneous Production at Ground Surface. Atmos. Environ. 2015, 106, 100–109. [Google Scholar] [CrossRef]
- Mushinski, R.M.; Phillips, R.P.; Payne, Z.C.; Abney, R.B.; Jo, I.; Fei, S.; Pusede, S.E.; White, J.R.; Rusch, D.B.; Raff, J.D. Microbial Mechanisms and Ecosystem Flux Estimation for Aerobic NOy Emissions from Deciduous Forest Soils. Proc. Natl. Acad. Sci. USA 2019, 116, 2138–2145. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Horn, M.A.; Behrendt, T.; Müller, S.; Li, J.; Cole, J.A.; Xie, B.; Ju, X.; Li, G.; Ermel, M.; et al. Soil HONO Emissions at High Moisture Content Are Driven by Microbial Nitrate Reduction to Nitrite: Tackling the HONO Puzzle. ISME J. 2019, 13, 1688–1699. [Google Scholar] [CrossRef]
- Cui, L.; Li, R.; Fu, H.; Meng, Y.; Zhao, Y.; Li, Q.; Chen, J. Nitrous Acid Emission from Open Burning of Major Crop Residues in Mainland China. Atmos. Environ. 2021, 244, 117950. [Google Scholar] [CrossRef]
- Zhang, J.; An, J.; Qu, Y.; Liu, X.; Chen, Y. Impacts of Potential HONO Sources on the Concentrations of Oxidants and Secondary Organic Aerosols in the Beijing-Tianjin-Hebei Region of China. Sci. Total Environ. 2019, 647, 836–852. [Google Scholar] [CrossRef]
- Sun, L.; Chen, T.; Jiang, Y.; Zhou, Y.; Sheng, L.; Lin, J.; Li, J.; Dong, C.; Wang, C.; Wang, X.; et al. Ship Emission of Nitrous Acid (HONO) and Its Impacts on the Marine Atmospheric Oxidation Chemistry. Sci. Total Environ. 2020, 735, 139355. [Google Scholar] [CrossRef]
- Li, S.; Matthews, J.; Sinha, A. Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O. Science 2008, 319, 1657–1660. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Zhang, Q.; Zheng, J.; Xu, Z.; Lv, M. Potential Sources of Nitrous Acid (HONO) and Their Impacts on Ozone: A WRF-Chem Study in a Polluted Subtropical Region. J. Geophys. Res. Atmos. 2016, 121, 3645–3662. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Shi, X.; Ma, X.; Wang, J.; Xu, F.; Zhang, Q.; Li, Y.; Teng, Z.; Han, Y.; Wang, Q.; et al. Simulation Verification of Barrierless HONO Formation from the Oxidation Reaction System of NO, Cl, and Water in the Atmosphere. Environ. Sci. Technol. 2021, 55, 7850–7857. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Yang, L.; Cao, J.; Wang, Q.; Tie, X.; Ho, K.F.; Shen, Z.; Zhang, R.; Li, G.; Zhu, C.; et al. Concentration and Sources of Atmospheric Nitrous Acid (HONO) at an Urban Site in Western China. Sci. Total Environ. 2017, 593–594, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Xie, P.; Su, H.; Gu, J.; Peng, F.; Li, S.; Zeng, L.; Liu, J.; Liu, W.; Zhang, Y. An Observational Study of the HONO-NO2 Coupling at an Urban Site in Guangzhou City, South China. Atmos. Environ. 2009, 43, 5731–5742. [Google Scholar] [CrossRef]
- Su, H.; Cheng, Y.F.; Cheng, P.; Zhang, Y.H.; Dong, S.; Zeng, L.M.; Wang, X.; Slanina, J.; Shao, M.; Wiedensohler, A. Observation of Nighttime Nitrous Acid (HONO) Formation at a Non-Urban Site during PRIDE-PRD2004 in China. Atmos. Environ. 2008, 42, 6219–6232. [Google Scholar] [CrossRef]
- Zha, Q.; Xue, L.; Wang, T.; Xu, Z.; Yeung, C.; Louie, P.K.K.; Luk, C.W.Y. Large Conversion Rates of NO2 to HNO2 Observed in Air Masses from the South China Sea: Evidence of Strong Production at Sea Surface? Geophys. Res. Lett. 2014, 41, 7710–7715. [Google Scholar] [CrossRef]
- Pandit, S.; Grassian, V.H. Gas-Phase Nitrous Acid (HONO) Is Controlled by Surface Interactions of Adsorbed Nitrite (NO2-) on Common Indoor Material Surfaces. Environ. Sci. Technol. 2022, 56, 12045–12054. [Google Scholar] [CrossRef]
- Sarwar, G.; Roselle, S.J.; Mathur, R.; Appel, W.; Dennis, R.L.; Vogel, B. A Comparison of CMAQ HONO Predictions with Observations from the Northeast Oxidant and Particle Study. Atmos. Environ. 2008, 42, 5760–5770. [Google Scholar] [CrossRef]
- Hou, S.; Tong, S.; Ge, M.; An, J. Comparison of Atmospheric Nitrous Acid during Severe Haze and Clean Periods in Beijing, China. Atmos. Environ. 2016, 124, 199–206. [Google Scholar] [CrossRef]
- Ye, C.; Zhou, X.; Pu, D.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Cantrell, C.; Mauldin, R.L.; Campos, T.; et al. Rapid Cycling of Reactive Nitrogen in the Marine Boundary Layer. Nature 2016, 532, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shen, H.; Guo, M.Z.; Zhao, M.; Jiang, Y.; Chen, T.; Liu, Y.; Li, H.; Zhu, Y.; Meng, H.; et al. Strong Marine-Derived Nitrous Acid (HONO) Production Observed in the Coastal Atmosphere of Northern China. Atmos. Environ. 2021, 244, 117948. [Google Scholar] [CrossRef]
- Zhong, J.; Kumar, M.; Francisco, J.S.; Zeng, X.C. Insight into Chemistry on Cloud/Aerosol Water Surfaces. Acc. Chem. Res. 2018, 51, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Francisco, J.S. Elucidating the Molecular Mechanisms of Criegee-Amine Chemistry in the Gas Phase and Aqueous Surface Environments. Chem. Sci. 2019, 10, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Li, H.; Kumar, M.; Liu, J.; Liu, L.; Zhang, X.; Zeng, X.C.; Francisco, J.S. Mechanistic Insight into the Reaction of Organic Acids with SO3 at the Air-Water Interface. Angew. Chem. 2019, 131, 8439–8443. [Google Scholar] [CrossRef]
- Martins-Costa, M.T.C.; Anglada, J.M.; Francisco, J.S.; Ruiz-López, M.F. Impacts of Cloud Water Droplets on the OH Production Rate from Peroxide Photolysis. Phys. Chem. Chem. Phys. 2017, 19, 31621–31627. [Google Scholar] [CrossRef]
- Martins-Costa, M.T.C.; Anglada, J.M.; Francisco, J.S.; Ruiz-López, M.F. Theoretical Investigation of the Photoexcited NO2 + H2O Reaction at the Air-Water Interface and Its Atmospheric Implications. Chem. Eur. J. 2019, 25, 13899–13904. [Google Scholar] [CrossRef]
- Hadizadeh, M.H.; Pan, Z.; Azamat, J. Investigation of OH Radical in the Water Nanodroplet during Vapor Freezing Process: An Ab Initio Molecular Dynamics Study. J. Mol. Liq. 2021, 343, 117597. [Google Scholar] [CrossRef]
- Hadizadeh, M.H.; Pan, Z.; Azamat, J. A New Insight into the Interaction of Hydroxyl Radical with Supercooled Nanodroplet in the Atmosphere. J. Mol. Liq. 2022, 359, 119261. [Google Scholar] [CrossRef]
- Hadizadeh, M.H.; Yang, L.; Fang, G.; Qiu, Z.; Li, Z. The Mobility and Solvation Structure of a Hydroxyl Radical in a Water Nanodroplet: A Born-Oppenheimer Molecular Dynamics Study. Phys. Chem. Chem. Phys. 2021, 23, 14628–14635. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, X.; Chen, J.; Tong, S.; Xie, H.B.; Wang, Z.; Xu, T.; Ge, M.; Allen, D.T. Heterogeneous Formation of HONO Catalyzed by CO2. Environ. Sci. Technol. 2021, 55, 12215–12222. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Duan, Z.; Li, H.; Zhu, C.; Henkelman, G.; Francisco, J.S.; Zeng, X.C. Formation of HONO from the NH3-Promoted Hydrolysis of NO2 Dimers in the Atmosphere. Proc. Natl. Acad. Sci. USA 2018, 115, 7236–7241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, W.R.; Brown, S.S.; Saiz-Lopez, A.; Thornton, J.A.; Von Glasow, R. Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts. Chem. Rev. 2015, 115, 4035–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiyu, D.; Francisco, J.S.; Schenter, G.K.; Garrett, B.C. Interaction of ClO Radical with Liquid Water. J. Am. Chem. Soc. 2009, 131, 14778–14785. [Google Scholar]
- Bedjanian, Y.; Poulet, G. Kinetics of Halogen Oxide Radicals in the Stratosphere. Chem. Rev. 2003, 103, 4639–4655. [Google Scholar] [CrossRef]
- Chang, C.T.; Liu, T.H.; Jeng, F.T. Atmospheric Concentrations of the Cl Atom, CIO Radical, and OH Radical in the Coastal Marine Boundary Layer. Environ. Res. 2004, 94, 67–74. [Google Scholar] [CrossRef]
- Li, M.; Mei, Q.; Han, D.; Wei, B.; An, Z.; Cao, H.; Xie, J.; He, M. The Roles of HO•, ClO• and BrO• Radicals in Caffeine Degradation: A Theoretical Study. Sci. Total Environ. 2021, 768, 144733. [Google Scholar] [CrossRef]
- Vandevondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Vandevondele, J.; Hutter, J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127, 114105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goedecker, S.; Teter, M.; Hutter, J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. Plumed 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Fox, D.J. Gaussian 16, Revision C. 01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Hratchian, H.P.; Schlegel, H.B. Using Hessian Updating to Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. J. Chem. Theory Comput. 2005, 1, 61–69. [Google Scholar] [CrossRef]
- Purvis, G.D.; Bartlett, R.J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Pople, J.A.; Head-Gordon, M.; Raghavachari, K. Quadratic Configuration Interaction.A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87, 5968–5975. [Google Scholar] [CrossRef]
- Baldridge, K.K.; Gordon, M.S.; Steckler, R.; Truhlar, D.G. Ab Initio Reaction Paths and Direct Dynamics Calculations. J. Phys. Chem. 1989, 93, 5107–5119. [Google Scholar] [CrossRef]
- Gonzalez-Lafont, A.; Truong, T.N.; Truhlar, D.G. Interpolated Variational Transition-State Theory: Practical Methods for Estimating Variational Transition-State Properties and Tunneling Contributions to Chemical Reaction Rates from Electronic Structure Calculations. J. Chem. Phys. 1991, 95, 8875–8894. [Google Scholar] [CrossRef]
- Garrett, B.C.; Truhlar, D.G. Classical Mechanical Theory and Applications to Collinear Reactions of Hydrogen Molecule. J. Phys. Chem. 1979, 83, 1052–1079. [Google Scholar] [CrossRef]
- Fernandez-Ramos, A.; Ellingson, B.A.; Garrett, B.C.; Truhlar, D.G. Variational Transition State Theory with Multidimensional Tunneling. Rev. Comput. Chem. 2007, 23, 125–232. [Google Scholar]
- Corchado, J.C.; Chuang, Y.Y.; Fast, P.L.; Hu, W.P.; Liu, Y.P.; Lynch, G.C.; Nguyen, K.A.; Jackels, C.F.; Fernandez-Ramos, A.; Ellingson, B.A. Polyrate, Version 9.7; University of Minnesota: Minneapolis, MN, USA, 2007. [Google Scholar]
- Ebastien Canneaux, S.; Ed Eric Bohr, F.; Henon, E. KiSThelP: A Program to Predict Thermodynamic Properties and Rate Constants from Quantum Chemistry Results. J. Comput. Chem. 2014, 35, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Anglada, J.M.; Solé, A. The Atmospheric Oxidation of HONO by OH, Cl, and ClO Radicals. J. Phys. Chem. A 2017, 121, 9698–9707. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, W.; Sun, J.; Zhu, S.; Li, K.; Meng, X.; Luo, J.; Shi, Z.; Zhou, D.; Crittenden, J.C. Oxidation Mechanisms of the UV/Free Chlorine Process: Kinetic Modeling and Quantitative Structure Activity Relationships. Environ. Sci. Technol. 2019, 53, 4335–4345. [Google Scholar] [CrossRef]
- Zhu, C.; Kumar, M.; Zhong, J.; Li, L.; Francisco, J.S.; Zeng, X.C. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface. J. Am. Chem. Soc. 2016, 138, 11164–11169. [Google Scholar] [CrossRef]
- Wen, L.; Chen, T.; Zheng, P.; Wu, L.; Wang, X.; Mellouki, A.; Xue, L.; Wang, W. Nitrous Acid in Marine Boundary Layer over Eastern Bohai Sea, China: Characteristics, Sources, and Implications. Sci. Total Environ. 2019, 670, 282–291. [Google Scholar] [CrossRef]
- Stutz, J.; Ackermann, R.; Fast, J.D.; Barrie, L. Atmospheric Reactive Chlorine and Bromine at the Great Salt Lake, Utah. Geophys. Res. Lett. 2002, 29, 1380. [Google Scholar] [CrossRef] [Green Version]
- Torrent-Sucarrat, M.; Francisco, J.S.; Anglada, J.M. Sulfuric Acid as Autocatalyst in the Formation of Sulfuric Acid. J. Am. Chem. Soc. 2012, 134, 20632–20644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Hadizadeh, M.H.; Wang, X.; Zhao, X.; Bai, X.; Xu, F.; Sun, Y. HONO Formation from the Oxidation Reactions of ClO, NO, and Water in the Gas-Phase and at the Air-Water Interface. Atmosphere 2023, 14, 30. https://doi.org/10.3390/atmos14010030
Zhang Q, Hadizadeh MH, Wang X, Zhao X, Bai X, Xu F, Sun Y. HONO Formation from the Oxidation Reactions of ClO, NO, and Water in the Gas-Phase and at the Air-Water Interface. Atmosphere. 2023; 14(1):30. https://doi.org/10.3390/atmos14010030
Chicago/Turabian StyleZhang, Qi, Mohammad Hassan Hadizadeh, Xiaotong Wang, Xianwei Zhao, Xurong Bai, Fei Xu, and Yanhui Sun. 2023. "HONO Formation from the Oxidation Reactions of ClO, NO, and Water in the Gas-Phase and at the Air-Water Interface" Atmosphere 14, no. 1: 30. https://doi.org/10.3390/atmos14010030
APA StyleZhang, Q., Hadizadeh, M. H., Wang, X., Zhao, X., Bai, X., Xu, F., & Sun, Y. (2023). HONO Formation from the Oxidation Reactions of ClO, NO, and Water in the Gas-Phase and at the Air-Water Interface. Atmosphere, 14(1), 30. https://doi.org/10.3390/atmos14010030