Planting Rice at Monsoon Onset Could Mitigate the Impact of Temperature Stress on Rice–Wheat Systems of Bihar, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Satellite Normalized Difference Vegetation Index
2.2.2. Meteorological Data
2.2.3. Soil Data
2.3. Rice Planting Date Scenarios
2.3.1. Farmers’ Practice Rice Planting Date
2.3.2. Monsoon Onset-Based Rice Planting Date
2.4. APSIM Gridded Crop Modeling
2.5. Assessing Temperature Stress on Rice and Wheat
3. Results
3.1. Mean Planting and Harvest Dates of Rice and Wheat in Bihar
3.2. The Relationship between Yields and Planting and Harvest Dates
3.3. Planting Dates and Temperature Stress Factors: Interannual Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoda, A.; Jose, S.; Gulati, A.; Rajkhowa, P. Sources and drivers of agricultural growth in Bihar. In Revitalizing Indian Agriculture and Boosting Farmer Incomes; Gulati, A., Roy, R., Saini, S., Eds.; Springer: Singapore, 2021; pp. 211–243. [Google Scholar]
- Bhatt, R.; Kaur, R.; Gosh, A. Strategies to practice climate smart agriculture to improve the livelihoods under rice–wheat systems in South Asia. In Sustainable Soil and Environmental Management; Springer-Nature Publication: Singapore, 2019; pp. 29–72. [Google Scholar]
- Bihar Statistical Handbook 2019; Directorate of Economics and Statistics, Department of Planning and Development, Government of Bihar: Patna, India, 2019.
- Sekar, I.; Pal, S. Rice and wheat productivity in the Indo-Gangetic Plain of India: Changing pattern of growth and future strategies. Indian J. Agric. Econ. 2012, 67, 238–252. [Google Scholar]
- Bhatla, R.; Varma, P.; Verma, S.; Gosh, S. El Nino/La Nina impact on crop production over different agro-climatic zones of Indo-Gangetic Plain of India. Theor. Appl. Climatol. 2020, 142, 151–163. [Google Scholar] [CrossRef]
- Srivastava, P.; Pal, D.K.; Aruche, K.M.; Wani, S.P.; Sahrawat, K.L. Soils of the Indo-Gangetic Plains: A pedogenic response to landscape stability, climatic variability and anthropogenic activity during the Holocene. Earth-Sci. Rev. 2015, 140, 54–71. [Google Scholar] [CrossRef] [Green Version]
- Erenstein, O.; Thorpe, W. Livelihoods and agro-ecological gradients: A meso-level analysis in the Indo-Gangetic Plains, India. Agric. Syst. 2011, 104, 42–53. [Google Scholar] [CrossRef]
- Lopez-Ridaura, S.; Frelat, R.; van Wijk, M.T.; Valbuena, D.; Krupnik, T.J.; Jat, M.L. Climate smart agriculture, farm household typologies and food security: An ex-ante assessment from eastern India. Agric. Syst. 2018, 159, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, K.; Aggarwal, P.K.; Mequanint, F.; Shirsath, P.B.; Stirling, C.M.; Khatri-Chhetri, A.; Rahut, D.B. Climate Variability and Change in Bihar, India: Challenges and Opportunities for Sustainable Crop Production. Sustainability 2017, 9, 1998. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, A.K.; Singh, S.; Singh, A.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res.-Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Sahu, N.; Saini, A.; Behera, S.; Sayama, T.; Nayak, S.; Sahu, L.; Duan, W.; Avtar, R.; Yamada, M.; Singh, R.; et al. Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India. Sustainability 2020, 12, 7023. [Google Scholar] [CrossRef]
- Arshad, M.S.; Farooq, M.; Asch, F.; Krishna, J.S.; Prasad, P.V.; Siddique, K.H. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol. Biochem. 2017, 115, 57–72. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Majumder, R.R. Effect of low temperature stress in transplanted aman rice varieties mediated by different transplanting dates. Acad. J. Plant Sci. 2009, 2, 132–138. [Google Scholar]
- Dubey, R.; Pathak, H.; Chakrabarti, B.; Singh, S.; Gupta, D.K.; Harit, R. Impact of terminal heat stress on wheat yield in India and options for adaptation. Agric. Syst. 2020, 181, 102826. [Google Scholar] [CrossRef]
- McDonald, A.J.; Keil, A.; Srivastava, A.; Craufurd, P.; Kishore, A.; Kumar, V.; Paudel, G.; Singh, S.; Singh, A.K.; Sohane, R.K.; et al. Time management governs climate resilience and productivity in the coupled rice-wheat cropping systems of eastern India. Nat. Food 2022, 3, 542–551. [Google Scholar] [CrossRef]
- Subash, N.; Singh, S.S.; Priya, N. Observed variability and trends in extreme temperature indices and rice–wheat productivity over two districts of Bihar, India-a case study. Theor. Appl. Climatol. 2012, 111, 235–250. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.; Feng, X.; Fu, B.; Wang, S.; Ji, F.; Pan, S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote. Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- He, Y.; Lee, E.; Warner, T.A. A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sens. Environ. 2017, 199, 201–217. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachtergaele, F.O.; Velthuizen, H.V.; Verelst, L.; Batjes, N.H.; Dijkshoorn, J.A.; Engelen, V.W.P.V.; Fischer, G.; Jones, A.; Mon-tanarella, L.; Petri, M.; et al. Harmonized World Soil Database (version 1.0). Food and Agric Organization of the UN (FAO); International Inst. for Applied Systems Analysis (IIASA); ISRIC-World Soil Information; Inst of Soil Science-Chinese Acad of Sciences (ISS-CAS); EC-Joint Research Centre (JRC). 2008. Available online: https://edepot.wur.nl/30776- (accessed on 10 December 2022).
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; McDonald, A.J.; Srivastava, A.K.; Gerard, B. Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India. Nat. Sustain. 2019, 2, 580–583. [Google Scholar] [CrossRef]
- Fitzpatrick, R.; Bain, C.L.; Knippertz, P.; Marsham, J.H.; Parker, D.J. The West African Monsoon Onset: A Concise Comparison of Definitions. J. Clim. 2015, 28, 8673–8694. [Google Scholar] [CrossRef]
- Fitzpatrick, R.G.J.; Parker, D.J.; Willetts, P.D. Assessing the level of spatial homogeneity of the agronomic Indian monsoon onset. Geophys. Res. Lett. 2016, 43, 11–867. [Google Scholar] [CrossRef]
- Montes, C.; Acharya, N.; Stiller-Reeve, M.A.; Kelley, C.; Hassan, S.M.Q. Interannual variability of monsoon onset and with-drawal in Bangladesh. Atmos. Sci. Lett. 2021, 22, e1069. [Google Scholar] [CrossRef]
- Stiller-Reeve, M.A.; Syed, A.; Spengler, T.; Spinney, J.A.; Hossain, R. Complementing Scientific Monsoon Definitions with Social Perception in Bangladesh. Bull. Am. Meteorol. Soc. 2015, 96, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Marteau, R.; Moron, V.; Philippon, N. Spatial coherence of monsoon onset over western and central Sahel (1950–2000). J. Clim. 2009, 22, 1313–1324. [Google Scholar] [CrossRef] [Green Version]
- Moron, V.; Robertson, A.W. Interannual variability of Indian summer monsoon rainfall onset date at local scale. Int. J. Clim. 2014, 34, 1050–1061. [Google Scholar] [CrossRef]
- McCown, R.; Hammer, G.; Hargreaves, J.; Holzworth, D.; Freebairn, D. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Humphreys, E.; Gaydon, D.; Eberbach, P. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crop. Res. 2016, 197, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Bai, H.; Liu, D.L. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System. Sustainability 2018, 10, 1277. [Google Scholar] [CrossRef] [Green Version]
- Balboa, G.R.; Archontoulis, S.V.; Salvagiotti, F.; Garcia, F.O.; Stewart, W.M.; Francisco, E.; Prasad, P.V.V.; Ciampitti, I.A. A systems-level yield gap assessment of maize-soybean rotation under high- and low-management inputs in the western US corn belt wsing APSIM. Agric. Syst. 2019, 174, 145–154. [Google Scholar] [CrossRef]
- Gaydon, D.; Probert, M.; Buresh, R.; Meinke, H.; Suriadi, A.; Dobermann, A.; Bouman, B.; Timsina, J. Rice in cropping systems—Modelling transitions between flooded and non-flooded soil environments. Eur. J. Agron. 2012, 39, 9–24. [Google Scholar] [CrossRef]
- Wang, E.; van Oosterom, E.J.; Meinke, H.; Asseng, S.; Robertson, M.J.; Huth, N.I.; Keating, B.A.; Probert, M.E. The new APSIM-wheat model-performance and future improvements. In Proceedings of the 11th Australian Agronomy Conference, Geelong, Victoria, 2–6 February 2003. [Google Scholar]
- Gaydon, D.; Singh, B.; Wang, E.; Poulton, P.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crop. Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Elliott, J.; Kelly, D.; Chryssanthacopoulos, J.; Glotter, M.; Jhunjhnuwala, K.; Best, N.; Wilde, M.; Foster, I. The parallel system for integrating impact models and sectors (pSIMS). Environ. Model. Softw. 2014, 62, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Craufurd, P.; Singh, S.; Kumar, V.; Singh, B.; McDonald, A.; Singh, A.K.; Kumar, A.; Singh, R.; Singh, R.; et al. New Frontiers in Agricultural Extension-Volume II; International Maize and Wheat Improveent Center (CIMMYT): El Batán, Mexico, 2020. [Google Scholar]
- Calderini, D.; Slafer, G. Changes in yield and yield stability in wheat during the 20th century. Field Crop. Res. 1998, 57, 335–347. [Google Scholar] [CrossRef]
- Ruane, A.C.; Phillips, M.; Müller, C.; Elliott, J.; Jägermeyr, J.; Arneth, A.; Balkovic, J.; Deryng, D.; Folberth, C.; Iizumi, T.; et al. Strong regional influence of climatic forcing datasets on global crop model ensembles. Agric. For. Meteorol. 2021, 300, 108313. [Google Scholar] [CrossRef]
- Folberth, C.; Skalský, R.; Moltchanova, E.; Balkovic, J.; Azevedo, L.B.; Obersteiner, M.; van der Velde, M. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 2016, 7, 11872. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaque, A.; Singh, S.; Lobell, D.; Singh, B.; Fishman, R.; Jain, M. Prior crop season management constrains farmer adaptation to warming temperatures: Evidence from the Indo-Gangetic Plains. Sci. Total. Environ. 2022, 807, 151671. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.J.; Kirtman, B.P.; L’Heureux, M.; Muñoz, Á.G.; Pegion, K. A decade of the North American Multimodel Ensemble (NMME): Research, application, and future directions. Bull. Ameri. Meteorol. Soc. 2022, 103, E973–E995. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.; Lazo, J.K.; Kumar, A.; Vitart, F.; de Perez, E.C.; Ray, A.J.; Murray, V.; et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Barlow, K.M.; Christy, B.P.; O’leary, G.J.; Riffkin, P.A.; Nuttall, J.G. Nuttall. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crop. Res. 2015, 171, 109–119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes, C.; Urfels, A.; Han, E.; Balwinder-Singh. Planting Rice at Monsoon Onset Could Mitigate the Impact of Temperature Stress on Rice–Wheat Systems of Bihar, India. Atmosphere 2023, 14, 40. https://doi.org/10.3390/atmos14010040
Montes C, Urfels A, Han E, Balwinder-Singh. Planting Rice at Monsoon Onset Could Mitigate the Impact of Temperature Stress on Rice–Wheat Systems of Bihar, India. Atmosphere. 2023; 14(1):40. https://doi.org/10.3390/atmos14010040
Chicago/Turabian StyleMontes, Carlo, Anton Urfels, Eunjin Han, and Balwinder-Singh. 2023. "Planting Rice at Monsoon Onset Could Mitigate the Impact of Temperature Stress on Rice–Wheat Systems of Bihar, India" Atmosphere 14, no. 1: 40. https://doi.org/10.3390/atmos14010040
APA StyleMontes, C., Urfels, A., Han, E., & Balwinder-Singh. (2023). Planting Rice at Monsoon Onset Could Mitigate the Impact of Temperature Stress on Rice–Wheat Systems of Bihar, India. Atmosphere, 14(1), 40. https://doi.org/10.3390/atmos14010040