PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Treatment and Analysis
2.3. Chemometric Analysis
2.4. Risk Analysis
3. Results and Discussion
3.1. PM10 and Metal Concentrations
3.2. Crustal Enrichment Factors
3.3. Chemometric Analysis
3.4. Risk Analysis
3.5. Temporal Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moradi, M.; Mokhtari, A.; Mohammadi, M.J.; Hadei, M.; Vosoughi, M. Estimation of long-term and short-term health effects attributed to PM2.5 standard pollutants in the air of Ardabil (using Air Q + model). Environ. Sci. Pollut. Res. 2022, 29, 21508–21516. [Google Scholar] [CrossRef] [PubMed]
- De Marco, A.; Amoatey, P.; Khaniabadi, Y.O.; Sicard, P.; Hopke, P.K. Mortality and morbidity for cardiopulmonary diseases attributed to PM2.5 exposure in the metropolis of Rome, Italy. Eur. J. Intern. Med. 2018, 57, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Conca, E.; Malandrino, M.; Giacomino, A.; Inaudi, P.; Giordano, A.; Ardini, F.; Traversi, R.; Abollino, O. Chemical fractionation of trace elements in arctic PM10 samples. Atmosphere 2022, 12, 1152. [Google Scholar] [CrossRef]
- EEA (European Environment Agency). 2021 Europe’s Air Quality Status 2021-Update; Web Report. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2021/air-quality-status-briefing-2021 (accessed on 25 November 2022).
- World Health Organization Europe. New WHO Global Air Quality Guidelines Aim to Save Millions of Lives from Air Pollution. 2021. Available online: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution (accessed on 25 November 2022).
- Tavella, R.A.; de Lima, B.R.; Ramires, P.F.; Santos, J.E.K.; Carvalho, R.B.; Marmett, B.; Vargas, V.M.F.; Baisch, P.R.M.; da Silva, J.F.M.R. Health impacts of PM2.5-bound metals and PAHs in a medium-sized Brazilian city. Environ. Monit. Assess. 2022, 194, 622. [Google Scholar] [CrossRef] [PubMed]
- Galindo, N.; Yubero, E.; Nicolás, J.F.; Varea, M.; Crespo, J. Characterization of metals in PM1 and PM10 and health risk evaluation at an urban site in the western Mediterranean. Chemosphere 2018, 201, 243–250. [Google Scholar] [CrossRef]
- Romanazzi, V.; Casazza, M.; Malandrino, M.; Maurino, V.; Piano, A.; Schilirò, T.; Gilli, G. PM10 Size Distribution of Metals and Environmental-Sanitary Risk Analysis in the City of Torino. Chemosphere 2014, 112, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Dockery, W.D.; Stone, P.H. Cardiovascular risks from fine particulate air pollution. N. Engl. J. Med. 2007, 356, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Zhou, Q.F.; Su, R.J.; Sun, Z.D.; Zhang, W.F.; Jin, X.T.; Zheng, Y.X. Cardiac dysfunction and metabolic remodeling due to seasonally ambient fine particles exposure. Sci. Total Environ. 2020, 721, 137792. [Google Scholar] [CrossRef]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 30 November 2022).
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004L0107 (accessed on 30 November 2022).
- Dlgs 155, 2010. Attuazione Della Direttiva 2008/50/CE Relativa Alla Qualità Dell’aria Ambiente e per Un’aria Più Pulita in Europa. Official Gazette n. 216 of the Italian Republic. Available online: https://www.gazzettaufficiale.it/eli/id/2010/09/15/010G0177/sg (accessed on 30 November 2022).
- Moreda-Pineiro, J.; Dans-Sanchez, L.; Sanchez-Pinero, J.; Turnes-Carou, I.; Muniategui-Lorenzo, S.; Lopez-Mahia, P. Oral bioavailability estimation of toxic and essential trace elements in PM10. Atmos. Environ. 2019, 213, 104–115. [Google Scholar] [CrossRef]
- Fang, W.X.; Yang, Y.C.; Xu, Z.M. PM10 and PM2.5 and Health Risk Assessment for Heavy Metals in a Typical Factory for Cathode Ray Tube Television Recycling. Environ. Sci. Technol. 2019, 47, 12469–12476. [Google Scholar] [CrossRef]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving air quality in the Po Valley, Italy: Some results by the LIFE-IPPREPAIR Project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Carugno, M.; Consonni, D.; Randi, R.; Catelan, D.; Grisotto, L.; Bertazzi, P.A.; Biggeri, A.; Baccini, M. Air Pollution Exposure, Cause-Specific Deaths and Hospitalizations in a Highly Polluted Italian Region. Environ. Res. 2016, 147, 415–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eurostat Statistics Explained 2022, Passenger Cars in the EU. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Passenger_cars_in_the_EU#Overview:_car_numbers_grow_with_a_rapid_increase_in_electric_but_a_low_share_of_overall_alternative_fuels (accessed on 25 November 2022).
- Malandrino, M.; Casazza, M.; Abollino, O.; Minero, C.; Maurino, V. Size Resolved Metal Distribution in the PM Matter of the City of Turin (Italy). Chemosphere 2016, 147, 477–489. [Google Scholar] [CrossRef]
- ARPA Piemonte Relazione Annuale Sui Dati Rilevati Dalla Rete Provinciale Di Monitoraggio Della Qualità Dell’aria. Anno 2007. Uno Sguardo All’aria. 10 Anni Dopo. 2007, p. 162. Available online: http://www.cittametropolitana.torino.it/cms/risorse/ambiente/dwd/qualita-aria/relazioni-annuali/relazione2007.pdf (accessed on 30 November 2022).
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Govender, P.; Sivakumar, V. Application of K-Means and Hierarchical Clustering Techniques for Analysis of Air Pollution: A Review (1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.r-project.org/index.html (accessed on 30 November 2022).
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://www.gruppochemiometria.it/index.php/software/19-download-the-r-based-chemometric-software (accessed on 14 December 2022).
- de Vries, A.; Ripley, B.D. Ggdendro: Create Dendrograms and Tree Diagrams Using “Ggplot2”. Available online: https://rdrr.io/bioc/structToolbox/man/hca_dendrogram.html (accessed on 30 November 2022).
- Galili, T. Dendextend: An R Package for Visualizing, Adjusting and Comparing Trees of Hierarchical Clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef] [Green Version]
- EPA Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). 1989; Volume I, p. 289. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 30 November 2022).
- United States Environmental Protection Agency (US-EPA) Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance for Standard Default Exposure Factors. Oswer Dir. 9285.6-03 2009, I. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 30 November 2022).
- U.S. EPA United States Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final Report); EPA/600/R-09/052F; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Nidzgorska-Lencewicz, J.; Czarnecka, M. Thermal Inversion and Particulate Matter Concentration in Wrocław in Winter Season. Atmosphere 2020, 11, 1351. [Google Scholar] [CrossRef]
- Largeron, Y.; Staquet, C. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos. Environ. 2016, 135, 92–108. [Google Scholar] [CrossRef]
- Ferrario, M.E.; Rossa, A.; Pernigotti, D. Characterization of PM10 Accumulation Periods in the Po Valley by Means of Boundary Layer Profilers. IOP Conf. Ser. Earth Environ. Sci. 2008, 1, 012067. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G. Climatology of Atmospheric PM10 Concentration in the Po Valley. Preprint. Atmospheric Chem. Phys. 2014, 14, 137–170. [Google Scholar] [CrossRef]
- Prodi, F.; Belosi, F.; Contini, D.; Santachiara, G.; Di Matteo, L.; Gambaro, A.; Donateo, A.; Cesari, D. Aerosol Fine Fraction in the Venice Lagoon: Particle Composition and Sources. Atmos. Res. 2009, 92, 141–150. [Google Scholar] [CrossRef]
- Sanderson, P.; Delgado-Saborit, J.M.; Harrison, R.M. A Review of Chemical and Physical Characterization of Atmospheric Metallic Nanoparticles. Atmos Environ. 2014, 94, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Rauch, J.N.; Pacyna, J.M. Earth’s Global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn Cycles: GLOBAL METAL CYCLES. Glob. Biogeochem. 2009, 23, GB2001. [Google Scholar] [CrossRef] [Green Version]
- Pacyna, E.G.; Pacyna, J.M.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S.; Panasiuk, D.; Nitter, S.; Pregger, T.; Pfeiffer, H.; Friedrich, R. Current and Future Emissions of Selected Heavy Metals to the Atmosphere from Anthropogenic Sources in Europe. Atmos. Environ. 2007, 41, 8557–8566. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Klein, E.H.; Vengosh, A. Global Biogeochemical Cycle of Vanadium. Proc. Natl. Acad. Sci. USA 2017, 114, E11092–E11100. [Google Scholar] [CrossRef] [Green Version]
- Hope, B.K. An Assessment of the Global Impact of Anthropogenic Vanadium. Biogeochemistry 1994, 37, 1–13. [Google Scholar] [CrossRef]
- Padoan, E.; Malandrino, M.; Giacomino, A.; Grosa, M.M.; Lollobrigida, F.; Martini, S.; Abollino, O. Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere 2016, 145, 495–507. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 Particulate Matter in the Ambient Air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Canepari, S.; Cardarelli, E.; Ghighi, S.; Marzo, M.L. Chemical Fractionation of Elements in Airborne Particulate Matter: Primary Results on PM10 and PM2.5 Samples in the Lazio Region (Central Italy). Ann. Chim. 2006, 96, 183–194. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D.; Vultaggio, M. Mass Levels, Crustal Component and Trace Elements in PM10 in Palermo, Italy. Atmos Environ. 2007, 41, 7977–7986. [Google Scholar] [CrossRef]
- Vestreng, V.; Breivik, K.; Adams, M.; Wagner, A.; Goodwin, J.; Rozovskaya, O.; Pacyna, J.M. Inventory Review 2005. Emission Data Reported to LRTAP Convention and NEC Directive. Initial Review for HMs and POPs. Oslo, Meteorological Synthesizing Centre—West (EMEP MSC-W Technical Report 1/2005). Available online: http://www.emep.int/publ/reports/2005/emep_technical_1_2005.pdf (accessed on 30 November 2022).
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Caseiro, A.; Bauer, H.; Schmidl, C.; Pio, C.A.; Puxbaum, H. Wood burning impact on PM10 in three Austrian regions. Atmos. Environ. 2009, 43, 2186–2195. [Google Scholar] [CrossRef]
- Cesari, D.; De Benedetto, G.E.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.M.; et al. Seasonal Variability of PM2.5 and PM10 Composition and Sources in an Urban Background Site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef]
- Megido, L.; Negral, L.; Castrillón, L.; Suárez-Peña, B.; Fernández-Nava, Y.; Marañón, E. Enrichment Factors to Assess the Anthropogenic Influence on PM10 in Gijón (Spain). Environ. Sci. Pollut. Res. 2017, 24, 711–724. [Google Scholar] [CrossRef]
- Gharaibeh, A.A.; El-Rjoob, A.O.; Harb, M.K. Determination of Selected Heavy Metals in Air Samples from the Northern Part of Jordan. Environ. Monit. Assess. 2010, 160, 425–429. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Et Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Lawson, D.R.; Winchester, J.W. A standard crustal aerosol as a reference for elemental enrichment factors. Atmos. Environ. 1967, 13, 925–930. [Google Scholar] [CrossRef]
- Malandrino, M.; Di Martino, M.; Giacomino, A.; Geobaldo, F.; Berto, S.; Grosa, M.M.; Abollino, O. Temporal Trends of Elements in Turin (Italy) Atmospheric Particulate Matter from 1976 to 2001. Chemosphere 2013, 90, 2578–2588. [Google Scholar] [CrossRef]
- Toledo, V.E.; Almeida, P.B.; Quiterio, S.L.; Arbilla, G.; Moreira, A.; Escaleira, V.; Moreira, J.C. Evaluation of Levels, Sources and Distribution of Toxic Elements in PM10 in a Suburban Industrial Region, Rio de Janeiro, Brazil. Environ. Monit. Assess. 2008, 139, 49–59. [Google Scholar] [CrossRef]
- Chavent, M.; Guégan, H.; Kuentz, V.; Patouille, B.; Saracco, J. PCA- and PMF-Based Methodology for Air Pollution Sources Identification and Apportionment. Environmetrics 2009, 20, 928–942. [Google Scholar] [CrossRef]
- Negral, L.; Suarez-Pena, B.; Zapico, E.; Fernandez-Nava, Y.; Megido, L.; Moreno, J.; Maranon, E.; Castrillon, L. Anthropogenic and Meteorological in Fl Uences on PM10 Metal/Semi-Metal Concentrations: Implications for Human Health. Chemosphere 2020, 243, 125347. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Barrrett, J.E.S.; Robinson, H.; Potgieter-Vermaak, S. Risk Assessment of Exposure to Particulate Output of a Demolition Site. Environ. Geochem. Health 2015, 37, 675–687. [Google Scholar] [CrossRef]
- Lu, X.; Wu, X.; Wang, Y.; Chen, H.; Gao, P.; Fu, Y. Risk Assessment of Toxic Metals in Street Dust from a Medium-Sized Industrial City of China. Ecotoxicol. Environ. Saf. 2014, 106, 154–163. [Google Scholar] [CrossRef]
V | Cr | Mn | Co | Ni | Cd | |
---|---|---|---|---|---|---|
RfC (mg m−3) | 1.0 × 10−4 | 1.4 × 10−4 | 5.0 × 10−5 | 6.0 × 10−6 | 9.0 × 10−5 | 1.0 × 10−5 |
RfCi (mg Kg−1 d−1) | 2.86 × 10−5 | 4.00 × 10−5 | 1.43 × 10−5 | 1.71 × 10−6 | 2.57 × 10−5 | 2.86 × 10−6 |
IR (adult, m3 h−1) | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
IR (children, m3 h−1) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
BW (adult, Kg) | 70 | 70 | 70 | 70 | 70 | 70 |
BW (children, Kg) | 15 | 15 | 15 | 15 | 15 | 15 |
Mean | Min | Max | 5th Percentile | 95th Percentile | |
---|---|---|---|---|---|
K | 203 | 55 | 586 | 157 | 484 |
Ti | 12 | 2 | 39 | 10 | 31 |
V | 5 | 0.7 | 12 | 4 | 11 |
Cr | 3 | 0.2 | 10 | 3 | 7 |
Mn | 8 | 1 | 24 | 6 | 20 |
Fe | 322 | 63 | 1069 | 215 | 793 |
Co | 0.5 | 0.02 | 2.4 | 0.2 | 2.0 |
Ni | 8 | 2 | 21 | 7 | 20 |
Cu | 12 | 1 | 43 | 9 | 29 |
Zn | 33 | 9 | 107 | 25 | 93 |
Cd | 0.4 | 0.1 | 2.7 | 0.3 | 0.6 |
Ba | 29 | 2 | 84 | 22 | 77 |
Hg | 1 | 0.3 | 5 | 1 | 4 |
Pb | 9 | 1 | 36 | 4 | 31 |
Mo | 1 | 0.2 | 5 | 0.6 | 3 |
Si | 1692 | 253 | 6810 | 418 | 3876 |
Zr | 0.2 | 0.03 | 0.7 | 0.2 | 0.6 |
Mean | Min | Max | 5th Percentile | 95th Percentile | |
---|---|---|---|---|---|
K | 555 | 42 | 2340 | 410 | 1815 |
Ti | 22 | 4 | 48 | 18 | 41 |
V | 5 | 0.9 | 15 | 5 | 10 |
Cr | 11 | 0.2 | 32 | 9 | 28 |
Mn | 24 | 6 | 71 | 21 | 52 |
Fe | 1430 | 588 | 3863 | 1200 | 3256 |
Co | 0.7 | 0.3 | 2.3 | 0.5 | 1.6 |
Ni | 16 | 0.6 | 198 | 8 | 28 |
Cu | 73 | 30 | 212 | 60 | 179 |
Zn | 89 | 24 | 253 | 78 | 163 |
Cd | 0.8 | 0.2 | 4.0 | 0.8 | 1.4 |
Ba | 72 | 9 | 146 | 81 | 114 |
Hg | 3 | 1 | 11 | 2 | 10 |
Pb | 20 | 6 | 73 | 15 | 53 |
Mo | 5 | 2 | 13 | 4 | 10 |
Si | 3437 | 1418 | 5667 | 3294 | 5277 |
Zr | 1.4 | 0.6 | 3.8 | 1.3 | 2.4 |
Mean | Min | Max | 5th Percentile | 95th Percentile | |
---|---|---|---|---|---|
K | 947 | 151 | 8715 | 582 | 2823 |
Ti | 32 | 7 | 77 | 28 | 64 |
V | 5 | 2 | 12 | 4 | 9 |
Cr | 15 | 2 | 48 | 12 | 42 |
Mn | 34 | 7 | 95 | 29 | 75 |
Fe | 2079 | 113 | 5827 | 1872 | 4532 |
Co | 0.6 | 0.08 | 2.5 | 0.5 | 1.8 |
Ni | 20 | 3 | 81 | 14 | 50 |
Cu | 98 | 34 | 266 | 84 | 226 |
Zn | 124 | 48 | 323 | 109 | 246 |
Cd | 1.0 | 0.1 | 3.7 | 0.7 | 2.4 |
Ba | 85 | 14 | 158 | 91 | 145 |
Hg | 6 | 0.07 | 138 | 1 | 4 |
Pb | 27 | 9 | 90 | 20 | 66 |
Mo | 7 | 3 | 19 | 5 | 17 |
Si | 2642 | 1107 | 4387 | 3062 | 4249 |
Zr | 2 | 0.7 | 5 | 2 | 4 |
Turin 1 | Turin 2 | Milan 3 | Rome 4 | Palermo 5 | |
---|---|---|---|---|---|
K | 751 | 441 | 480 | ||
Ti | 27 | 25 | 63 | 10 | |
V | 5 | 3 | 9 | 3 | 22 |
Cr | 13 | 10 | 14 | 7 | 9 |
Mn | 29 | 23 | 35 | 10 | 18 |
Fe | 1754 | 1902 | 1835 | 685 | 827 |
Co | 0.7 | 0.7 | 0.3 | ||
Ni | 18 | 6 | 10 | 4 | 8 |
Cu | 86 | 45 | 68 | 38 | 83 |
Zn | 107 | 74 | 213 | 70 | 60 |
Cd | 0.9 | 0.9 | 0.4 | ||
Ba | 63 | 62 | 92 | 46 | |
Hg | 5 | 3 | |||
Pb | 24 | 15 | 215 | 16 | 17 |
Mo | 6 | 5 | |||
Si | 3040 | 4160 | 265 | ||
Zr | 2 | 2 | |||
PM10 | 63 | 62 | 92 | 46 |
V | Cr | Mn | Co | Ni | Cd | |
---|---|---|---|---|---|---|
Adults | ||||||
Mean | 0.011 | 0.015 | 0.090 | 0.022 | 0.033 | 0.015 |
Standard deviation | 0.006 | 0.014 | 0.076 | 0.021 | 0.052 | 0.015 |
Median | 0.010 | 0.011 | 0.075 | 0.016 | 0.020 | 0.009 |
25% perc. | 0.007 | 0.005 | 0.032 | 0.007 | 0.012 | 0.005 |
75% perc. | 0.014 | 0.018 | 0.121 | 0.029 | 0.040 | 0.017 |
IQR | 0.007 | 0.013 | 0.088 | 0.022 | 0.029 | 0.012 |
Numerosity | 107 | 106 | 107 | 107 | 105 | 107 |
Children | ||||||
Mean | 0.038 | 0.054 | 0.327 | 0.078 | 0.122 | 4.679 |
Standard deviation | 0.022 | 0.051 | 0.275 | 0.076 | 0.189 | 3.201 |
Median | 0.035 | 0.039 | 0.274 | 0.056 | 0.072 | 4.872 |
25% perc. | 0.024 | 0.019 | 0.118 | 0.026 | 0.044 | 1.738 |
75% perc. | 0.050 | 0.066 | 0.439 | 0.105 | 0.148 | 7.252 |
IQR | 0.026 | 0.047 | 0.321 | 0.079 | 0.104 | 5.514 |
Numerosity | 107 | 106 | 107 | 107 | 105 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diana, A.; Bertinetti, S.; Abollino, O.; Giacomino, A.; Buoso, S.; Favilli, L.; Inaudi, P.; Malandrino, M. PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities. Atmosphere 2023, 14, 48. https://doi.org/10.3390/atmos14010048
Diana A, Bertinetti S, Abollino O, Giacomino A, Buoso S, Favilli L, Inaudi P, Malandrino M. PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities. Atmosphere. 2023; 14(1):48. https://doi.org/10.3390/atmos14010048
Chicago/Turabian StyleDiana, Aleandro, Stefano Bertinetti, Ornella Abollino, Agnese Giacomino, Sandro Buoso, Laura Favilli, Paolo Inaudi, and Mery Malandrino. 2023. "PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities" Atmosphere 14, no. 1: 48. https://doi.org/10.3390/atmos14010048
APA StyleDiana, A., Bertinetti, S., Abollino, O., Giacomino, A., Buoso, S., Favilli, L., Inaudi, P., & Malandrino, M. (2023). PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities. Atmosphere, 14(1), 48. https://doi.org/10.3390/atmos14010048