Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.2. Revised Universal Soil Loss Equation
3.2.1. Precipitation Erosivity (R) Factor
3.2.2. Soil Erodibility (K) Factor
3.2.3. Slope Length and Slope Steepness (LS) Factor
3.2.4. Cover Management Factor
3.2.5. Support Practice Factor
3.3. Using the Height above Nearest Drainage Model
4. Results
4.1. Soil Loss Assessment Using the RUSLE Model
4.2. Soil Erosion in the YTRB
4.3. Effects of Precipitation, LULC and Topography on Soil Erosion
4.4. Flood Hazard Mapping Using the HAND Model
4.5. Soil Erosion and Flood Hazard Synergies
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Xiaoping, Y.; Leixiang, W.; Jun, X.; Yongqian, W. Assessment of soil erosion sensitivity and response analysis of soil erosion sensitivity to land use change in Chengde City. Water Resour. Hydropower Eng. 2021, 52, 221–232. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, J.Q.; Wang, T.Q. Water and soil loss in Tibet and measures for conservation. Adv. Sci. Technol. Water Resour. 2005, 45–48. [Google Scholar]
- Fang, L.; Huang, J.; Cai, J.; Nitivattananon, V. Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China. J. Hydrol. 2022, 612, 128091. [Google Scholar] [CrossRef]
- Gupta, S.; Javed, A.; Datt, D. Economics of flood protection in India. Nat. Hazards 2003, 28, 199–210. [Google Scholar] [CrossRef]
- Haidong, L.; Weishou, S.; Changxin, Z.; Lei, Y. Soil Erosion in the Source Area of the Yarlung Zangbo in China. J. Ecol. Rural. Environ. 2010, 26, 25–30. [Google Scholar]
- Liu, S.Z.; Zhang, J.G.; Gu, S.X. Study on the soil erosion types in Tibet. Mt. Res. 2006, 24, 592–596. [Google Scholar] [CrossRef]
- Xingmin, M.; Pengfei, L.; Bintao, L.; Guangju, Z.; Peng, G.; Wenyi, S. Spatial-Temporal Development and Driving Mechanisms of Erosion on the Chinese Loess Plateau Between 1901 and 2016. Yellow River 2022, 44, 36–45. [Google Scholar] [CrossRef]
- Weili, H.; Junqing, Z.; Zhibo, W.; Zhenting, W.; Gaowa, B. Research Progress of Domestic Soil Erosion Prediction Model. J. Inn. Mong. For. Sci. Technol. 2022, 48, 55–59. [Google Scholar]
- Shuihong, S.; Hengkai, L.; Zhiwei, Z. Spatial-temporal variation of soil erosion in Dongjiang source area based on RUSLE model. J. Earth Environ. 2022, 13, 344–353. [Google Scholar] [CrossRef]
- Wischmeier, W.; Smith, D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning. In Agriculture Handbooks, USA, No. 537; Department of Agriculture, Science and Education Administration: West Lafayette, IN, USA, 1978; Volume 537, 62p. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss equation (RUSLE). In Agricultural Handbook, USA, No. 703; USDA, Agricultural Research Service: Beltsville, MD, USA, 1997. [Google Scholar]
- Rennó, C.; Nobre, A.; Cuartas, L.; Soares, J.; Hodnett, M.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Nobre, A.D.; Cuartas, L.A.; Hodnett, M.; Renno, C.D.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height Above the Nearest Drainage—A hydrologically relevant new terrain model. J. Hydrol. 2011, 404, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Tingting, L.; Peijun, S.; Chunying, M.; Fanya, S.; Juan, N.; Bo, C. Height above nearest drainage and application in flood inundation mapping in China. J. Beijing Norm. Univ. 2022, 58, 300–309. [Google Scholar] [CrossRef]
- Zheng, X.; Tarboton, D.G.; Maidment, D.R.; Liu, Y.Y.; Passalacqua, P. River Channel Geometry and Rating Curve Estimation Using Height above the Nearest Drainage. J. Am. Water Resour. Assoc. 2018, 54, 785–806. [Google Scholar] [CrossRef] [Green Version]
- Chow, C.; Twele, A.; Martinis, S. An assessment of the Height Above Nearest Drainage terrain descriptor for the thematic enhancement of automatic SAR-based flood monitoring services. In Remote Sensing for Agriculture, Ecosystems and Hydrology XVIII; SPIE: Bellingham, WA, USA, 2016; Volume 9998. [Google Scholar]
- Liu, Y.; Maidment, D.; Tarboton, D.; Zheng, X.; Yıldırım, A.; Sazib, N.; Wang, S. A CyberGIS Approach to Generating High-resolution Height Above Nearest Drainage (HAND) Raster for National Flood Mapping. In Proceedings of the Third International Conference on CyberGIS and Geospatial Data Science, Urbana, IL, USA, 26–28 July 2016. [Google Scholar]
- Speckhann, G.A.; Borges Chaffe, P.L.; Goerl, R.F.; de Abreu, J.J.; Altamirano Flores, J.A. Flood hazard mapping in Southern Brazil: A combination of flow frequency analysis and the HAND model. Hydrol. Sci. J. 2018, 63, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Lang, A. Human impact on the environment in the Ethiopian and Eritrean highlands—A state of the art. Earth Sci. Rev. 2004, 64, 273–320. [Google Scholar] [CrossRef]
- Qin, W.; Zhu, Q.K.; Zhang, Y. Soil erosion assessment of small watershed in Loess Plateau based on GIS and RUSLE. Trans. Chin. Soc. Agric. Eng. 2009, 25, 157–163. [Google Scholar] [CrossRef]
- Reusing, M.; Schneider, T.; Ammer, U. Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/D2-stereo-data in a GIS. Int. J. Remote Sens. 2010, 21, 1885–1896. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Liu, S.; Wang, Z.; Liu, T.; Shalamzari, M.J. Effects of Climate Change on Vegetation Growth in the Yellow River Basin from 2000 to 2019. Remote Sens. 2022, 14, 687. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Nie, N. Spatial Downscaling of TRMM Precipitation Data Using an Optimal Subset Regression Model with NDVI and Terrain Factors in the Yarlung Zangbo River Basin, China. Adv. Meteorol. 2018, 2018, 3491960. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, W.; Liu, T.; Li, Q. Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the Yarlung Zangbo River Basin, China. Water 2018, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S.; Li, G.Y.; Valladares, G.; Batistella, M. Mapping soil erosion risk in Rondônia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degrad. Dev. 2004, 15, 499–512. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Shao, X.M. Estimation of soil erosion supported by GIS and RUSLE: A case study of Maotiaohe Watershed, Guizhou Province. J. Beijing For. Univ. 2006, 28, 67–71. [Google Scholar]
- Mengmei, W.; Suhua, F.; Baoyuan, L. Quantitative Research of Water Erosion on the Qinghai-Tibet Plateau. Adv. Earth Sci. 2021, 36, 740–752. [Google Scholar] [CrossRef]
- Tongde, C.; Juying, J.; Haolin, W.; Chunjing, Z.; Hong, L. Progress in Research on Soil Erosion in Qinghai-Tibet Plateau. Acta Pedol. Sin. 2020, 57, 547–564. [Google Scholar] [CrossRef]
- Feng, W.; Jintong, L.; Tonggang, F.; Hui, G.; Fei, Q. Spatio-temporal variations in soil erosion and its influence factors in Taihang Mountain area based on RUSLE modeling. Chin. J. Eco-Agric. 2022, 30, 1064–1076. [Google Scholar] [CrossRef]
- Ruiyin, C.; Dongchun, Y.; Anbang, W.; Chenggang, L.; Zhonglin, S. Research on Soil Erosion in Key Prevention and Control Region of Soil and Water Loss Based on GIS/CSLE in Sichuan Province. J. Soil Water Conserv. 2020, 34, 17–26. [Google Scholar] [CrossRef]
- Zhengfa, C.; Aimin, G.; Dongwei, N.; Liudong, Z.; Jianxiong, W.; Biao, X. Characteristics of Soil Erosion and Nutrient Lossin Yunnan Province Based on RUSLE Model. J. Soil Water Conserv. 2021, 35, 7–14. [Google Scholar] [CrossRef]
- Cuiyan, L.; Xihua, S.; Yueqing, L. Quantitative attribution of soil erosion for different geomorphological types in mountainous area of Mid-Shandong. Water Resour. Hydropower Eng. 2020, 51, 209–219. [Google Scholar] [CrossRef]
- Congjian, S.; Ruojing, L.; Zhenjing, Z.; Jiarui, W.; Jiulin, S. Characteristic analysis of soil and water loss in typical small watersheds of the Middle Yellow River based on RUSLE model. Southwest China J. Agric. Sci. 2022, 35, 200–208. [Google Scholar] [CrossRef]
- Xiaomei, L.; Yong, L.; Zhigang, H.; Yusong, D.; Hao, G.; Qingheng, H. Soil Erosion Characteristics of Sugarcane-Growing Watershed Based on RUSLE. Bull. Soil Water Conserv. 2022, 42, 82–88+397. [Google Scholar] [CrossRef]
- Shuangyun, P.; Kun, Y.; Liang, H.; Quanli, X.; Yajun, H. Spatio-temporal evolution analysis of soil erosion based on USLE model in Dianchi Basin. Trans. Chin. Soc. Agric. Eng. 2018, 34, 138–146+305. [Google Scholar] [CrossRef]
- Jian, Z.; Rong, L. Soil Erosion and Subarea Characteristics in Yarlung Tsangpo RiverBasi. J. Yangtze River Sci. Res. Inst. 2008, 25, 42–45. [Google Scholar]
- Xiaobu, C.; Cheng, Q.; Jie, H. Soil Erosion and Its Countermeasures in the Middle Reaches of Yarlung Zangbo River in Tibet Autnomous Region. Bull. Soil Water Conserv. 1996, 5, 48–53. [Google Scholar] [CrossRef]
- Manyi, C.; Gang, Z.; Dahong, Z.; Shiqiang, Z. Global snowmelt flood disasters and their impact from 1900 to 2020. J. Glaciol. Geocryol. 2022, 10, 0361. [Google Scholar] [CrossRef]
- Chen, T.; Niu, R.Q.; Li, P.X.; Zhang, L.P.; Du, B. Regional soil erosion risk mapping using RUSLE, GIS and remote sensing: A case study in Miyun Watershed, North China. Environ. Earth Sci. 2011, 63, 533–541. [Google Scholar] [CrossRef]
- Dutta, S.; Ghosh, S. Impact of climate and land use changes on the flood hazard of the middle Brahmaputra Reach, India. J. Disaster Res. 2012, 7, 573–581. [Google Scholar] [CrossRef]
- Zhao, W.W.; Fu, B.J.; Qiu, Y. An Upscaling Method for Cover-Management Factor and Its Application in the Loess Plateau of China. Int. J. Environ. Res. Public Health 2013, 10, 4752–4766. [Google Scholar] [CrossRef] [Green Version]
- Song, M.H.; Ma, Y.M.; Zhang, Y.; Li, M.S.; Ma, W.Q.; Sun, F.L. Analyses of Characteristics and Trend of Air Temperature Variation along the Brahmaputra Valley. Clim. Environ. Res. 2011, 16, 760–766. [Google Scholar] [CrossRef]
- Peng, S.Z. 1-km Monthly Precipitation Dataset for China (1901–2017); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar]
- Ding, Y.X.; Peng, S.Z. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.Z.; Gang, C.C.; Cao, Y.; Chen, Y.M. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations; International Institute for Applied Systems Analysis. China Soil Map Based Harmonized World Soil Database (HWSD) (v1.1) (2009); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019. [Google Scholar]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008. [Google Scholar]
- Wischmeier, W.H.; Mannering, J.V. Relation of Soil Properties to its Erodibility. Soil Sci. Soc. Am. J. 1969, 33, 131–137. [Google Scholar] [CrossRef]
- Williams, J.R. EPIC-erosion/productivity impact calculator: 1. Model documentation. Tech. Bull. United States Dep. Agric. 1990, 4, 206–207. [Google Scholar] [CrossRef]
- Niyonsenga, J.D.; Mugabowindekwe, M.; Mupenzi, C. Spatial analysis of soil erosion sensitivity using the Revised Universal Soil Loss Equation model in Nyamasheke District, Western Province of Rwanda. Trans. Gis 2020, 25, 735–750. [Google Scholar] [CrossRef]
- Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Xie, G.; An, K. The function and economic value of soil conservation of ecosystems in Qinghai-Tibet Plateau. Acta Ecol. Sin. 2003, 23, 2367–2378. [Google Scholar]
- Wang, W.Z.; Jiao, J.Y. Quantitative evaluation on factors influencing soil erosion in China. Bull. Soil Water Conserv. 1996. [Google Scholar]
- Wischmeir, W.H. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountain: Guide for Selection of Practices for Soil and Water Conservation; USDA: Washington, DC, USA, 1965; Volume 282. [Google Scholar]
- Valeriano, M.M.; Kuplich, T.M.; Storino, M.; Amaral, B.D.; Mendes, J.N.; Lima, D.J. Modeling small watersheds in Brazilian Amazonia with shuttle radar topographic mission-90m data. Comput. Geosci. 2006, 32, 1169–1181. [Google Scholar] [CrossRef]
- Mark, D.M. Network models in geomorphology. In Modelling Geomorphological Systems; John Wiley: New York, NY, USA, 1988. [Google Scholar]
- Kumar, S.; Kushwaha, S.P.S. Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. J. Earth Syst. Sci. 2013, 122, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Zhao, R.Y.; Shi, Z.; Viscarra Rossel, R.A.; Wan, D.; Liang, Z.Z. Integrating multi-source data to improve water erosion mapping in Tibet, China. Catena 2018, 169, 31–45. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research and the development of soil conservation—A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.; Wang, N.; Cheng, H. Maximum Grade Approach to Surplus Floodwater of Hyperconcentration Rivers in Flood Season and its Application. Water Resour. Manag. 2011, 25, 2575–2593. [Google Scholar] [CrossRef]
- Li, X.; Wei, X. Analysis of the Relationship between Soil Erosion Risk and Surplus Floodwater during Flood Season. J. Hydrol. Eng. 2014, 19, 1294–1311. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Zhou, Y.; Hou, X.; Yang, X. Characteristics of watershed dynamic sediment delivery based on improved RUSLE model. Catena 2022, 219, 106602. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Global analysis of support practices in USLE-based soil erosion modeling. Prog. Phys. Geogr. Earth Environ. 2019, 43, 391–409. [Google Scholar] [CrossRef]
- Kumar, M.; Sahu, A.P.; Sahoo, N.; Dash, S.S.; Raul, S.K.; Panigrahi, B. Global-scale application of the RUSLE model: A comprehensive review. Hydrol. Sci. J. 2022, 67, 806–830. [Google Scholar] [CrossRef]
Vegetation Type | Area (ha) | Proportion (%) | C Value | Source |
---|---|---|---|---|
Broad-leaved forest | 840,050 | 3.26 | 0.06 | Xiao et al. [55] |
Coniferous forest | 1,654,860 | 6.41 | 0.09 | Xiao et al. [55] |
Tropical rain forest | 268,494 | 1.04 | 0.004 | Xiao et al. [55] |
Shrubs | 3,810,622 | 14.77 | 0.09 | Xiao et al. [55] |
Alpine steppe | 7,920,449 | 30.69 | 0.15 | Wang & Jiao [56] |
Alpine meadow | 8,813,183 | 34.15 | 0.15 | Wang & Jiao [56] |
Grassland | 910,231 | 3.53 | 0.11 | Wang & Jiao [56] |
Savanna | 22,289 | 0.09 | 0.04 | Xiao et al. [55] |
Farmland | 341,261 | 1.32 | 0.55 | Yu et al. [55] |
Bare area | 2347 | 0.01 | 0.55 | Yu et al. [55] |
Water body | 174,376 | 0.68 | 1 | Zhou et al. [1] |
Glacier | 1,043,678 | 4.05 | 1 | Zhou et al. [1] |
Land Use Type | Area (ha) | Proportion (%) | P |
---|---|---|---|
Agricultural | 405,554 | 1.57 | 0.5 |
Degraded forest | 1,282,931 | 4.97 | 0.8 |
Densely vegetated | 2,508,603 | 9.72 | 1.0 |
Grassland | 12,322,344 | 47.76 | 0.9 |
Open forest | 1,516,450 | 5.89 | 0.8 |
Rocky areas | 5,508,307 | 21.35 | 1.0 |
Sandy areas | 932,961 | 3.62 | 1.0 |
Settlements | 25,155 | 0.10 | 0.1 |
Snow areas | 402,839 | 1.56 | 1.0 |
Water bodies | 892,381 | 3.46 | 0.0 |
Station | Average Annual Precipitation (mm) | R Factor (MJ mm ha−1 h−1 y−1) | ||||
---|---|---|---|---|---|---|
Station Value | In This Study | Relative Error (%) | Station Value | In This Study | Relative Error (%) | |
Namling | 576 | 473 | −17.88 | 1391 | 1230 | −11.57 |
Lhoka | 378 | 397 | 5.03 | 895 | 722 | −19.33 |
Mainling | 707 | 663 | −6.22 | 638 | 698 | 9.40 |
Nyingchi | 709 | 663 | −6.49 | 709 | 721 | 1.69 |
Bomê | 929 | 878 | −5.49 | 992 | 920 | −7.26 |
Soil Erosion Range (t ha−1 y−1) | Soil Erosion Grade | Area (ha) | Area (%) | Annual Soil Erosion (t) | Total Soil Erosion (%) |
---|---|---|---|---|---|
<5 | Slight | 20,452,949.71 | 79.46 | 28,272,582.80 | 26.07 |
5–25 | Light | 4,543,178.91 | 17.65 | 46,992,121.22 | 43.34 |
25–50 | Moderate | 614,943.14 | 2.39 | 20,107,953.27 | 18.54 |
50–80 | Intense | 86,096.40 | 0.33 | 5,149,888.65 | 4.75 |
80–150 | Extremely intense | 23,608.96 | 0.09 | 2,428,166.16 | 2.24 |
>150 | Severe | 20,770.33 | 0.08 | 5,477,968.03 | 5.05 |
Flood Hazard Zone (m) | Area (ha) | Area (%) |
---|---|---|
High (<5) | 2,537,622.95 | 9.84 |
Moderate (5–10) | 268,151.88 | 1.04 |
Low (10–15) | 397,292.32 | 1.54 |
Very low (15–100) | 1,071,023.77 | 4.15 |
No hazard (>100) | 21,525,909.08 | 83.43 |
Slope Degree (°) | Slight Soil Erosion | Light | Moderate | Intense | Extremely Intense | Severe | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | |
0 | 118,191.55 | 0.46 | 2.85 | 0.00 | 0.52 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
0–10 | 7,206,708.72 | 28.03 | 510,034.31 | 1.98 | 46,884.67 | 0.18 | 7264.24 | 0.03 | 2446.48 | 0.01 | 1365.86 | 0.01 |
0–20 | 6,982,718.36 | 27.16 | 1,476,670.55 | 5.74 | 134,854.66 | 0.52 | 19,621.67 | 0.08 | 7166.27 | 0.03 | 5675.01 | 0.02 |
0–30 | 4,409,361.76 | 17.15 | 1,637,668.97 | 6.37 | 217,520.93 | 0.85 | 28,982.35 | 0.11 | 8003.05 | 0.03 | 7963.62 | 0.03 |
0–40 | 1,498,273.05 | 5.83 | 809,853.16 | 3.15 | 172,528.87 | 0.67 | 23,121.38 | 0.09 | 4782.41 | 0.02 | 4742.85 | 0.02 |
>40 | 231,078.53 | 0.90 | 108,417.10 | 0.42 | 43,119.20 | 0.17 | 7098.06 | 0.03 | 1207.26 | 0.00 | 1022.98 | 0.00 |
Slope Degree (°) | No Hazard Zone | VERY LOW | Low | Moderate | High | |||||
---|---|---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | ha | % | |
0 | 340.96 | 0.00 | 1611.24 | 0.01 | 655.84 | 0.00 | 1137.51 | 0.00 | 113,926.83 | 0.44 |
0–10 | 4,632,904.37 | 17.96 | 1,808,157.27 | 7.01 | 217,530.54 | 0.84 | 336,071.54 | 1.30 | 801,184.48 | 3.11 |
10–20 | 8,060,866.55 | 31.24 | 442,714.69 | 1.72 | 28,390.06 | 0.11 | 34,933.84 | 0.14 | 82,164.17 | 0.32 |
20–30 | 6,046,054.18 | 23.43 | 195,204.15 | 0.76 | 14,207.27 | 0.06 | 16,594.81 | 0.06 | 46,046.45 | 0.18 |
30–40 | 2,402,127.25 | 9.31 | 77,187.37 | 0.30 | 6208.52 | 0.02 | 6908.68 | 0.03 | 23,181.79 | 0.09 |
>40 | 373,117.74 | 1.45 | 12,582.55 | 0.05 | 1137.51 | 0.00 | 1090.94 | 0.00 | 4484.20 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhu, S.; Wen, X.; Shao, H.; He, C.; Qi, J.; Lv, L.; Han, L.; Liu, S. Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China. Atmosphere 2023, 14, 49. https://doi.org/10.3390/atmos14010049
Chen S, Zhu S, Wen X, Shao H, He C, Qi J, Lv L, Han L, Liu S. Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China. Atmosphere. 2023; 14(1):49. https://doi.org/10.3390/atmos14010049
Chicago/Turabian StyleChen, Shan, Shaocheng Zhu, Xin Wen, Huaiyong Shao, Chengjin He, Jiaguo Qi, Lingfeng Lv, Longbin Han, and Shuhan Liu. 2023. "Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China" Atmosphere 14, no. 1: 49. https://doi.org/10.3390/atmos14010049
APA StyleChen, S., Zhu, S., Wen, X., Shao, H., He, C., Qi, J., Lv, L., Han, L., & Liu, S. (2023). Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China. Atmosphere, 14(1), 49. https://doi.org/10.3390/atmos14010049