Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data Collection and Evaluation
2.3. Hydrological and Hydrogeological Data Collection and Processing
2.4. Spatial Data Collection and Processing
2.5. Future Climate Change Projections
2.6. Future Land Use Change Projections
2.7. Projected Groundwater Projections
2.8. Hydrological Modeling Using SWAT
- SWt final soil water content at time t in (mm H2O)
- SWo initial soil water content on day i in (mm H2O)
- t time in (days)
- Rday precipitation on day i in (mm)
- Qsurf surface runoff on day i in (mm)
- Ea evaporation on day i in (mm)
- Wseep percolation and bypass flow leaving the bottom of soil strata (mm)
- Qgw return flow on day i (mm)
- Qsurf = runoff or excess rainfall (mm).
- Rday = precipitation on a given day (mm).
- Ia = initial abstractions such as surface storage, interception, and infiltration prior to runoff (mm) and
- S = retention parameter (mm).
SWAT Model Calibration, Validation, and Performance Evaluation
2.9. Hydrogeologic Modeling Using MODFLOW
MODFLOW Model Calibration and Performance Evaluation
2.10. Conceptualization of Scenarios Combination for Future Groundwater Level Projections
3. Results and Discussion
3.1. Climate Change Projections
3.2. Land Use Change Projections
3.3. SWAT Model Sensitivity Analysis
3.4. SWAT Model Calibration and Validation—For Discharge
3.5. SWAT Model Calibration and Validation—For Recharge
3.6. Groundwater Abstraction Projections
3.7. MODFLOW Sensitivity Analysis
3.8. MODFLOW Calibration—Steady State
3.9. MODFLOW Calibration—Transient
3.10. Groundwater Level Projections
3.11. Future Impact on Groundwater Resources
4. Policy Guidelines for the Adaptation of the Impact of Multiple Stresses on Groundwater Levels
5. Assumptions, Limitations, and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramnarong, V. Evaluation of groundwater management in Bangkok: Positive and negative. In Groundwater in the Urban Environment: Selected City Profiles; 1999; pp. 51–62. [Google Scholar]
- Arshad, A.; Mirchi, A.; Samimi, M.; Ahmad, B. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the irrigated Indus basin. Sci. Total Environ. 2022, 838, 156044. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, W.; Zaman, M.A.; Dilawar, A.; Sajid, Z. Monitoring the impacts of spatio-temporal land-use changes on the regional climate of city Faisalabad, Pakistan. Ann. GIS 2019, 25, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.; Rana, A.D.; Tariq, S.; Kanwal, S.; Ali, R.; Haidar, A. Groundwater levels susceptibility to degradation in Lahore metropolitan. Depression 2011, 150, 8-01. [Google Scholar]
- Saleem, F.; Arshad, A.; Mirchi, A.; Khaliq, T.; Zeng, X.; Rahman, M.; Dilawar, A.; Pham, Q.B.; Mahmood, K. Observed changes in crop yield associated with droughts propagation via natural and human-disturbed agro-ecological zones of Pakistan. Remote Sens. 2022, 14, 2152. [Google Scholar] [CrossRef]
- Sajjad, M.M.; Wang, J.; Abbas, H.; Ullah, I.; Khan, R.; Ali, F. Impact of Climate and Land-Use Change on Groundwater Resources, Study of Faisalabad District, Pakistan. Atmosphere 2022, 13, 1097. [Google Scholar] [CrossRef]
- Clifton, C.; Evans, R.; Hayes, S.; Hirji, R.; Puz, G.; Pizarro, C. Water and climate change. 2010. [Google Scholar]
- Nyakundi, R.; Makokha, M.; Mwangi, J.; Obiero, C. Impact of rainfall variability on groundwater levels in Ruiru municipality, Kenya. Afr. J. Sci. Technol. Innov. Dev. 2015, 7, 329–335. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Shukla, S.; Graham, W.; Wani, S.P.; Garg, K.K. Bi-decadal groundwater level trends in a semi-arid south indian region: Declines, causes and management. J. Hydrol. Reg. Stud. 2016, 8, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Umar, M.; Khan, S.N.; Arshad, A.; Aslam, R.A.; Khan, H.M.S.; Rashid, H.; Pham, Q.B.; Nasir, A.; Noor, R.; Khedher, K.M.; et al. A modified approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in Irrigated Indus Basin. Environ. Sci. Pollut. Res. 2022, 29, 1–22. [Google Scholar] [CrossRef]
- Basharat, M. Groundwater Environment in Lahore, Pakistan. In Groundwater Environment in Asian Cities; Elsevier: Amsterdam, The Netherlands, 2016; pp. 147–184. [Google Scholar]
- Basharat, M.; Rizvi, S.A. Groundwater extraction and waste water disposal regulation. Is Lahore Aquifer at stake with as usual approach. In Pakistan Engineering Congress, World Water Day, Lahore; 2011. [Google Scholar]
- Heureux, A.M.C.; Alvar-Beltrán, J.; Manzanas, R.; Ali, M.; Wahaj, R.; Dowlatchahi, M.; Afzaal, M.; Kazmi, D.; Ahmed, B.; Salehnia, N.; et al. Climate Trends and Extremes in the Indus River Basin, Pakistan: Implications for Agricultural Production. Atmosphere 2022, 13, 378. [Google Scholar] [CrossRef]
- Aslam, R.A.; Shrestha, S.; Pal, I.; Ninsawat, S.; Shanmugam, M.; Anwar, S. Projections of climatic extremes in a data poor transboundary river basin of India and Pakistan. Int. J. Climatol. 2020, 40, 4992–5010. [Google Scholar] [CrossRef]
- Hina, S.; Saleem, F.; Arshad, A.; Hina, A.; Ullah, I. Droughts over Pakistan: Possible cycles, precursors and associated mechanisms. Geomat. Nat. Hazards Risk 2021, 12, 1638–1668. [Google Scholar] [CrossRef]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Shirazi, S.A.; Pourghasemi, H.R.; Shaukat, I. Spatiotemporal urban sprawl and land resource assessment using Google Earth Engine platform in Lahore district, Pakistan. In Computers in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 137–150. [Google Scholar]
- Gabriel, H.; Khan, S. Climate responsive urban groundwater management options in a stressed aquifer system. IAHS-AISH Publ. 2010, 338, 166–168. [Google Scholar]
- Ahmad, A.; Chao, W.; Yixian, T.; Sultan, M.; Falak, A.; Wei, D.; Jing, W. SAR-based Subsidence Monitoring and Assessment of the Factors Involved in the Occurrence of Subsidence, Lahore City. J. Resour. Ecol. 2022, 13, 826–841. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, M.; Rafiq, M.; Iqbal, N.; Ali, M.; Sajjad, M.I. Hydrological modeling of the Lahore aquifer using isotopic chemical and numerical techniques. Back Issues J. Sci. Vis. 2002, 7, 16. [Google Scholar]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef]
- MacAllister, D.; Krishan, G.; Basharat, M.; Cuba, D.; MacDonald, A.M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. 2022, 15, 390–396. [Google Scholar] [CrossRef]
- Liu, W.; Bailey, R.T.; Andersen, H.E.; Jeppesen, E.; Park, S.; Thodsen, H.; Nielsen, A.; Molina-Navarro, E.; Trolle, D. Assessing the impacts of groundwater abstractions on flow regime and stream biota: Combining SWAT-MODFLOW with flow-biota empirical models. Sci. Total Environ. 2020, 706, 135702. [Google Scholar] [CrossRef]
- Cheema, M.; Immerzeel, W.; Bastiaanssen, W. Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [Green Version]
- de Graaf, I.E.M.; Sutanudjaja, E.H.; van Beek, L.P.H.; Bierkens, M.F.P. A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 2015, 19, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Melaku, N.D.; Wang, J. A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada. J. Hydrol. 2019, 575, 420–431. [Google Scholar] [CrossRef]
- Behera, A.K.; Pradhan, R.M.; Kumar, S.; Chakrapani, G.J.; Kumar, P. Assessment of groundwater flow dynamics using MODFLOW in shallow aquifer system of mahanadi delta (east coast), India. Water 2022, 14, 611. [Google Scholar] [CrossRef]
- Awan, U.K.; Ismaeel, A. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. J. Hydrol. 2014, 519, 1368–1382. [Google Scholar] [CrossRef]
- Awan, U.K.; Liaqat, U.W.; Choi, M.; Ismaeel, A. A SWAT modeling approach to assess the impact of climate change on consumptive water use in Lower Chenab Canal area of Indus basin. Hydrol. Res. 2016, 47, 1025–1037. [Google Scholar] [CrossRef]
- Aslam, M.; Arshad, M.; Singh, V.P.; Shahid, M.A. Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan. Sustainability 2022, 14, 4421. [Google Scholar] [CrossRef]
- Aslam, M.; Shehzad, M.U.; Ali, A.; Ali, N.; Chaiyasan, K.; Tahir, H.; Joyklad, P.; Hussain, Q. Seepage and Groundwater Numerical Modelling for Managing Waterlogging in the Vicinity of the Trimmu–Sidhnai Link Canal. Infrastructures 2022, 7, 144. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, M.; Shrestha, S.; Hafeez, M.A.; Moiz, A.; Sheikh, Z.A. Impacts of climate and land-use change on groundwater recharge in the semi-arid lower Ravi River basin, Pakistan. Groundw. Sustain. Dev. 2022, 17, 100743. [Google Scholar] [CrossRef]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pal, S.C.; Arshad, A.; Pham, Q.B.; Zhang, L. Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. J. Hydrol. 2022, 612, 128295. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, Z.; Zhang, W.; Dilawar, A. Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geosci. Front. 2020, 11, 1805–1819. [Google Scholar] [CrossRef]
- Basharat, M.; Basharat, M. Developing Sukh-Beas as a potential recharge site during wet years for Bari Doab. Appl. Water Sci. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Rana, T.; Ullah, K.; Christen, E.; Nafees, M. Investigating Conjunctive Water Management Options Using a Dynamic Surface-Groundwater Modelling Approach: A Case Study of Rechna Doab. CSIRO Land and Water Technical Report 2003. Available online: http://hdl.handle.net/102.100.100/193016?index=1 (accessed on 1 January 2022).
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Ma, J.; Ahmad, I.; Asghar, A.; Khan, J. PS-InSAR Based Monitoring of Land Subsidence by Groundwater Extraction for Lahore Metropolitan City, Pakistan. Remote Sens. 2022, 14, 3950. [Google Scholar] [CrossRef]
- Qureshi, A.; Sayed, A.H. Situation Analysis of the Water Resources of Lahore Establishing a Case for Water Stewardship; WWF-Pakistan and Cleaner Production Institute (CPI): Lahore, Pakistan, 2014; pp. 1–45. [Google Scholar]
- Cheema, M.; Bastiaanssen, W.G. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agric. Water Manag. 2010, 97, 1541–1552. [Google Scholar] [CrossRef]
- Khan, S.; Rana, T.; Gabriel, H.F.; Ullah, M.K. Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol. J. 2008, 16, 1635–1654. [Google Scholar] [CrossRef]
- Basharat, M.; Ali, S.U.; Azhar, A.H. Spatial variation in irrigation demand and supply across canal commands in Punjab: A real integrated water resources management challenge. Water Policy 2014, 16, 397–421. [Google Scholar] [CrossRef]
- Anandhi, A.; Hutchinson, S.; Harrington, J.; Rahmani, V.; Kirkham, M.B.; Rice, C.W. Changes in spatial and temporal trends in wet, dry, warm and cold spell length or duration indices in Kansas, USA. Int. J. Climatol. 2016, 36, 4085–4101. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Land Cover CCI Product User Guide Version 2; Tech. Rep.; 2017. [Google Scholar]
- Bhatti, S.S.; Tripathi, N.K.; Nitivattananon, V.; Rana, I.A.; Mozumder, C. A multi-scale modeling approach for simulating urbanization in a metropolitan region. Habitat Int. 2015, 50, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Hoornweg, D.; Pope, K. Population predictions for the world’s largest cities in the 21st century. Environ. Urban. 2017, 29, 195–216. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gujree, I.; Zhang, F.; Meraj, G.; Farooq, M.; Muslim, M.; Arshad, A. Soil and Water Assessment Tool for Simulating the Sediment and Water Yield of Alpine Catchments: A Brief Review. In Geospatial Modeling for Environmental Management; CRC Press: Boca Raton, FL, USA, 2022; pp. 37–57. [Google Scholar]
- Srinivasan, R.; Arnold, J.; Jones, C. Hydrologic modelling of the United States with the soil and water assessment tool. Int. J. Water Resour. Dev. 1998, 14, 315–325. [Google Scholar] [CrossRef]
- Samimi, M.; Mirchi, A.; Moriasi, D.; Ahn, S.; Alian, S.; Taghvaeian, S.; Sheng, Z. Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies. J. Hydrol. 2020, 590, 125418. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Guo, J.; Su, X. Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrol. Res. 2019, 50, 861–877. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of SWAT model performance in simulating daily streamflow under rainfall data scarcity in Pacific island watersheds. Water 2018, 10, 1533. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Popp, A.; Calvin, K.; Luderer, G.; Emmerling, J.; Gernaat, D. Scenarios towards limiting climate change below 1.5 °C Nat. Clim. Change 2018, 8, 325. [Google Scholar]
- Lutz, W.; KC, S. Dimensions of global population projections: What do we know about future population trends and structures? Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2779–2791. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, Z.; Zhang, W.; Gujree, I. Long-term perspective changes in crop irrigation requirement caused by climate and agriculture land use changes in Rechna Doab, Pakistan. Water 2019, 11, 1567. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Sultan, S. Climate Change and South Asia: What Makes the Region Most Vulnerable? 2009. Available online: https://mpra.ub.uni-muenchen.de/21875/ (accessed on 2 October 2022).
- Pomee, M.S.; Hertig, E. Precipitation projections over the Indus River Basin of Pakistan for the 21st century using a statistical downscaling framework. Int. J. Climatol. 2022, 42, 289–314. [Google Scholar] [CrossRef]
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.; Syed, S.; Hina, S.; Asfaw, T.G.; Omer, A. Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earth’s Future 2022, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Gondim, R.; Silveira, C.; Filho, F.D.S.; Vasconcelos, F.; Cid, D. Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, semi-arid Brazil. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Jampanil, D.; Suttinon, P.; Seigo, N.; Koontanakulvong, S. Application of input-output table for future water resources management under policy and climate change in Thailand: Rayong province case study. Change 2012, 27, 29. [Google Scholar]
- Khan, I.; Chowdhury, H.; Alam, F.; Alam, Q.; Afrin, S. An investigation into the potential impacts of climate change on power generation in Bangladesh. J. Sustain. Energy Environ. 2012, 3, 103–110. [Google Scholar]
- Price, J.I.; Chermak, J.M.; Felardo, J. Low-flow appliances and household water demand: An evaluation of demand-side management policy in Albuquerque, New Mexico. J. Environ. Manag. 2014, 133, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Ullah, S.; Ullah, W.; Waseem, M.; Dou, X.; Zhao, C.; Karim, A.; Zhu, J.; Hagan, D.F.T.; Bhatti, A.S.; et al. Evaluation and projection of precipitation in Pakistan using the Coupled Model Intercomparison Project Phase 6 model simulations. Int. J. Climatol. 2022. [Google Scholar] [CrossRef]
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Lo, M.-H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.-F.; Ducharne, A.; Yang, Z.-L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Becker, R.; Koppa, A.; Schulz, S.; Usman, M.; der Beek, T.A.; Schüth, C. Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. J. Hydrol. 2019, 577, 123944. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Mbuligwe, S. Physical Infrastructure Service and Environmental Health Deficiencies in Urban and Peri-Urban Areas; Elsevier: Amsterdam, The Netherlands, 2011; pp. 189–198. [Google Scholar]
- Muhammad, W.S. RURAL-URBAN MIGRATION (A CASE STUDY OF LAHORE DISTRICT). Ph.D. Dissertation, University of the Punjab, Lahore, Pakistan, 2004. [Google Scholar]
- Dilawar, A.; Chen, B.; Trisurat, Y.; Tuankrua, V.; Arshad, A.; Hussain, Y.; Measho, S.; Guo, L.; Kayiranga, A.; Zhang, H.; et al. Spatiotemporal shifts in thermal climate in responses to urban cover changes: A-case analysis of major cities in Punjab, Pakistan. Geomat. Nat. Hazards Risk 2021, 12, 763–793. [Google Scholar] [CrossRef]
- Mumtaz, F.; Tao, Y.; de Leeuw, G.; Zhao, L.; Fan, C.; Elnashar, A.; Bashir, B.; Wang, G.; Li, L.; Naeem, S.; et al. Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST). Remote Sens. 2020, 12, 2987. [Google Scholar] [CrossRef]
Data Type | Duration | Resolution | Sources(s) |
---|---|---|---|
Meteorological Data | |||
Observed Climate Data Rainfall, Tmax, and Tmin | 1982–2015 | Daily | Pakistan Meteorological Department (PMD) Chandigarh Meteorological Station (CMS) |
Gridded Climate Data Princeton University forcing APHRODITE dataset Rainfall | 1982–2015 | 0.5° × 0.5° (daily) | Princeton University (http://hydrology.princeton.edu/data/; access date: January 2022) Research Institute for Humanity and Nature (http://www.chikyu.ac.jp; access date: January 2022) |
NOAA climate dataset Tmax and Tmin | 1982–2015 | Daily | NOAA’s National Centers for Environmental Information (NCEI) (https://www.ncdc.noaa.gov/cdo-web/; access date: January 2022) |
Hydrological Data | |||
River discharge and Canal discharge | 2000–2014 | Daily | Punjab Irrigation Department (PID) |
Regional Climate Models (RCMs) | 1982–2100 | Daily (0.5° × 0.5°) | CORDEX (http://www.cordex.org/; access date: January 2022) |
Spatial Data | |||
Land use data Soil date | 2007 | 1 km | Ref. [40] World Map (https://worldmap.harvard.edu/data/geonode:DSMW_RdY; access date: January 2022) |
Digital Elevation Model (DEM) | 30 m | (https://earthexplorer.usgs.gov/; access date: January 2022) | |
Aquifer lithology and hydraulic data | Groundwater division of Water and Power Development Authority (WAPDA) | ||
Population data (Counts, density) | 1998–2017 | Pakistan Bureau of Statistics (PBS) (http://www.pbs.gov.pk/; access date: January 2022) |
RCP Scenarios | Land Use Scenarios | SSP Scenarios | Scenario Combinations |
---|---|---|---|
RCP4.5 | R1S1, R2S2 | SSP1 | RCP4.5-R1S1-SSP1 RCP4.5-R2S2-SSP1 |
RCP8.5 | R1S1, R2S2 | SSP3 | RCP8.5-R1S1-SSP3 RCP8.5-R2S2-SSP3 |
Year | Land Use and Land Cover Type (km2) | |||||
---|---|---|---|---|---|---|
R1S1 | R2S2 | |||||
Agriculture | Built-Up | Water | Agriculture | Built-Up | Water | |
Base period | 5392 | 1184 | 240 | 5392 | 1184 | 240 |
2020 | 5048 * | 1528 * | 240 | 5001 * | 1575 * | 240 |
2043 | 4325 * | 2251 * | 240 | 4287 * | 2289 * | 240 |
2072 | 3642 * | 2935 * | 240 | 3736 * | 2840 * | 240 |
2100 | 2860 * | 3716 * | 240 | 3247 * | 3329 * | 240 |
Performance Statistics | Calibration | Validation |
---|---|---|
Ravi Syphon gauge (upstream) | ||
Coefficient of determination (R2) | 0.77 (very good) | 0.72 (good) |
Nash-Sutcliffe efficiency (NSE) | 0.76 (very good) | 0.72 (good) |
Percentage bias in volume (PBIAS) | −10.46 (good) | 1.68 (very good) |
Shahdara gauge (downstream) | ||
Coefficient of determination (R2) | 0.75 (very good) | 0.81 (very good) |
Nash-Sutcliffe efficiency (NSE) | 0.74 (good) | 0.75 (very good) |
Percentage bias in volume (PBIAS) | −0.20 (very good) | 0.79 (very good) |
Parameter | Description of Parameters | Parameter Range | Calibrated Value | Sensitivity Rank |
---|---|---|---|---|
CN2.mgt | SCS runoff curve number | (35, 98) | 47.63 | 1 |
CANMX.hru | Maximum canopy storage (mm H2O) | (0, 100) | 6.02 | 2 |
TLAPS.sub | Temperature lapse rate (°C/km) | (−50, 50) | −3.80 | 3 |
ESCO.hru | Soil evaporation compensation factor | (0, 1) | 0.35 | 4 |
SOL_AWC.sol | Available water capacity of the soil layer (mm H2O/mm soil) | (0, 1) | 0.11 | 5 |
CH_K2.rte | Effective hydraulic conductivity in main channel alluvium | (−0.01, 500) | 9.50 | 6 |
GW_DELAY.gw | Threshold depth of water in the shallow aquifer required for return flow to occur | (0, 500) | 19.00 | 7 |
SOL_K.sol | Saturated hydraulic conductivity (mm/h) | (0, 2000) | 42.22 | 8 |
PLAPS.sub | Precipitation lapse rate (mm H2O/km) | (−500, 500) | 305.10 | 9 |
LAT_TIME.hru | Horizontal flow travel time (days) | (0, 180) | 8.00 | 10 |
Sr. No. | Improve | Adaptation Options | Time-Based Effectiveness | Approximate Time to Observe Outcome |
---|---|---|---|---|
1 | A | Population control | Slow | 10–15 years |
2 | New economic zones | Slow | 10–20 years | |
3 | Regulation of abstraction and zoning | Fast | 3–5 years | |
4 | A/R | Supplemental supply of treated sewage | Fast | 1–2 years |
5 | R | Building development laws | Slow | 5–10 years |
6 | Rainwater and storm water harvesting | Fast | 4–5 years | |
7 | River ponding | Fast | 3–4 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, R.A.; Shrestha, S.; Usman, M.N.; Khan, S.N.; Ali, S.; Sharif, M.S.; Sarwar, M.W.; Saddique, N.; Sarwar, A.; Ali, M.U.; et al. Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere 2022, 13, 2001. https://doi.org/10.3390/atmos13122001
Aslam RA, Shrestha S, Usman MN, Khan SN, Ali S, Sharif MS, Sarwar MW, Saddique N, Sarwar A, Ali MU, et al. Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere. 2022; 13(12):2001. https://doi.org/10.3390/atmos13122001
Chicago/Turabian StyleAslam, Rana Ammar, Sangam Shrestha, Muhammad Nabeel Usman, Shahbaz Nasir Khan, Sikandar Ali, Muhammad Shoaib Sharif, Muhammad Waqas Sarwar, Naeem Saddique, Abid Sarwar, Mohib Ullah Ali, and et al. 2022. "Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios" Atmosphere 13, no. 12: 2001. https://doi.org/10.3390/atmos13122001
APA StyleAslam, R. A., Shrestha, S., Usman, M. N., Khan, S. N., Ali, S., Sharif, M. S., Sarwar, M. W., Saddique, N., Sarwar, A., Ali, M. U., & Arshad, A. (2022). Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere, 13(12), 2001. https://doi.org/10.3390/atmos13122001