Application of BP Neural Networks in Tide Forecasting
Abstract
:1. Introduction
2. Methods and Data
2.1. Back Propagation(BP) Neural Network
2.1.1. BP Algorithm
2.1.2. Tide Time Series Prediction Model
2.2. Data Source
3. Tide Prediction
3.1. Effect of Hidden Layers and Hidden Layer Nodes on the Prediction Accuracy of Neural Network
3.2. Different Types of Prediction Methods Affect the Neural Network Prediction Accuracy
3.3. Prediction Results and Discussions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.Y. Tidology; Science Press: Beijing, China, 1980; pp. 5–9. [Google Scholar]
- Darwin, G. On an Apparatus for Facilitating the Reduction of Tidal Observations. Proc. R. Soc. Lond. 1892, 52, 345–389. [Google Scholar]
- Doodson, A.T. The analysis of tidal observations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1928, 227, 223–279. [Google Scholar]
- Doodson, A.T. The analysis and predictions of tides in shallow water. Int. Hydrogr. Rev. 1957, 33, 85–126. [Google Scholar]
- Grewal, M.S.; Andrews, A.P. Klaman Filtering; Theory and Practice Using Matlab, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Yen, P.H.; Jan, C.D.; Lee, Y.P.; Lee, H.F. Application of Kalman filter to short-term tide level prediction. J. Waterw. Port Coast. Ocean Eng. 1996, 122, 226–231. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, C.; Zhao, Z. Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography. Nat. Hazards 2020, 104, 2511–2530. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Fang, Z.; Yuan, B.; Zhang, G.; Lu, J. Learning from a complementary-label source domain: Theory and algorithms. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [Google Scholar] [CrossRef]
- Meng, F.; Xiao, X.; Wang, J. Rating the crisis of online public opinion using a multi-level index system. Int. Arab J. Inf. Technol. 2022, 19, 597–608. [Google Scholar] [CrossRef]
- Xie, W.; Li, X.; Jian, W.; Yang, Y.; Liu, H.; Robledo, L.F.; Nie, W. A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county, China. ISPRS Int. J. Geo-Inf. 2021, 10, 93. [Google Scholar] [CrossRef]
- French, M.N.; Krajewski, W.F.; Cuykendall, R.R. Rainfall forecasting in space time using a neural network. J. Hydrol. 1992, 137, 1–31. [Google Scholar] [CrossRef]
- Tsai, C.-P.; Lee, T.-L. Back-propagation neural network in tidal-level forecasting. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 195–202. [Google Scholar] [CrossRef]
- Chen, B.F.; Chun, C.C.; Wang, D. Tide forecasting of tides around Taiwan by artificial neural network method and wavelet analysis. China Ocean Eng. 2007, 21, 659–675. [Google Scholar]
- Liu, C.; Yin, J.C. A high-precision short-term tide prediction model. J. Shanghai Marit. Univ. 2016, 037, 74–80. [Google Scholar]
- Qin, S.Y.; Li, J.J.; Long, B.X.; Zhang, Z.Y.; Wang, L.Z.; Yan, Y.H.; Sun, J.L. Tide tide prediction based on GPOS-BP neural networks. Mar. Inf. 2020, 2, 1–5. (In Chinese) [Google Scholar]
- Xu, D.J. An improved PSO-BP neural network red tide prediction model based on principal component analysis. Bull. Surv. Mapp. 2021, (Suppl. S2), 234–240. [Google Scholar]
- Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide prediction in the Venice Lagoon using nonlinear autoregressive exogenous (NARX) neural network. Water 2021, 13, 1173. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Artificial Intelligence models for prediction of the tide level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 35, 2537–2548. [Google Scholar] [CrossRef]
- Lee, T.L.; Jeng, D.S. Aplication of artificil ncural netwarks in tide forecting. Ocean Eng. 2002, 29, 1003–1022. [Google Scholar] [CrossRef]
- Wu, W.H.; Li, L.B.; Yin, J.C.; Lyu, W.Y.; Zhang, W.J. A modular tide level prediction method based on a NARX neural network. IEEE Access 2021, 9, 147416–147429. [Google Scholar] [CrossRef]
- Zhu, G.Q. Research on short-term tide forecast based on Bi-LSTM recurrent neural network. Int. J. Soc. Sci. Educ. Res. 2020, 3, 19–29. [Google Scholar]
- Tsai, C.P.; Lin, C.; Shen, J.N. Nenral nework for wave forecasting among muli-staions. Ocean Eng. 2002, 29, 1683–1695. [Google Scholar] [CrossRef]
- Haykin, S. Principles of Neural Networks; Mechanical Machinery Industry Press: Beijing, China, 2004. [Google Scholar]
- Xie, W.; Nie, W.; Saffari, P.; Robledo, L.F.; Descote, P.; Jian, W. Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China. Nat. Hazards 2021, 109, 931–948. [Google Scholar] [CrossRef]
- Li, A.; Masouros, C.; Swindlehurst, A.L.; Yu, W. 1-Bit massive MIMO transmission: Embracing interference with symbol-level precoding. IEEE Commun. Mag. 2021, 59, 121–127. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, H.; Yuan, Q.; Li, J.; Wang, F. ESTNet: Embedded spatial-temporal network for modeling traffic flow dynamics. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19201–19212. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Tian, J.; Liu, S.; Yang, B.; Zheng, W. Haze grading using the convolutional neural networks. Atmosphere 2022, 13, 522. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Zheng, W.; Ge, L.; Tian, J.; Liu, Y.; Liu, S. Evaluation of empirical atmospheric models using swarm-c satellite data. Atmosphere 2022, 13, 294. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Y.; Zheng, W.; Yin, L. Smog prediction based on the deep belief—BP neural network model (DBN-BP). Urban Clim. 2022, 41, 101078. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Zheng, R.; Zhang, Y. The impact of air pollution perception on urban settlement intentions of young talent in China. Int. J. Environ. Res. Public Health 2022, 19, 1080. [Google Scholar] [CrossRef]
- Liang, X.; Luo, L.; Hu, S.; Li, Y. Mapping the knowledge frontiers and evolution of decision making based on agent-based modeling. Knowl.-Based Syst. 2022, 250, 108982. [Google Scholar] [CrossRef]
- Xiong, Q.; Chen, Z.; Huang, J.; Zhang, M.; Song, H.; Hou, X.; Feng, Z. Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction. Rare Met. 2020, 39, 589–596. [Google Scholar] [CrossRef]
- Li, M.C.; Liang, S.X.; Sun, Z.C. Application of artificial neural networks to tide forecasting. J. Dalian Univ. Technol. 2007, 47, 101–105. [Google Scholar]
- Lin, W.; Yi, Z.; Tao, C. Back propagation neural network with adaptive differential evolution algorithm fortime series forecasting. Expert Syst. Appl. 2015, 42, 855–863. [Google Scholar]
- Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 2003, 24, 4907–4938. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Hornik, K. Approximation cupabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Wen, X.H.; Chen, K.Z. A nonlinear time-series model based on a neural network. J. Xidian Univ. 1994, 1, 73–78. [Google Scholar]
- Lee, J.W.; Irish, J.L.; Bensi, M.T.; Marcy, D.C. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning. Coast. Eng. 2021, 170, 104024. [Google Scholar] [CrossRef]
- Liang, S.X.; Li, M.C.; Sun, Z.C. Prediction models for tidal level including strong meteorologic effects using a neural network. Ocean Eng. 2008, 35, 666–675. [Google Scholar] [CrossRef]
- Nunno, F.D.; Granata, F.; Gargano, R.; de Marinis, G. Forecasting of extreme storm tide events using NARX neural network-based models. Atmosphere 2021, 12, 512. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, C.; Conde, M.; Deng, B.; Chen, J. Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature. Ocean Sci. 2019, 15, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Analysis of financial market trend based on autoregressive conditional heteroscedastic model and BP neural network prediction. J. Intell. Fuzzy Syst. 2020, 39, 5845–5857. [Google Scholar] [CrossRef]
Hidden Layers | Prediction Error | Number of Cycle Steps | Fitting Error |
---|---|---|---|
one | 0.0091016 | 45 | <0.005 |
two | 0.0113051 | 39 |
Number of Nodes | Prediction Error | Number of Cycle Steps | Fitting Error |
---|---|---|---|
6 | 0.008615866 | 35 | <0.005 |
7 | 0.008105314 | 40 | |
8 | 0.009234574 | 71 |
Tide | Frequency | Amplitude | Phase Lags | Tide | Frequency | Amplitude | Phase Lags |
---|---|---|---|---|---|---|---|
M2 | 0.081 | 78.16 | 94.86 | S2 | 0.083 | 43.98 | 119.05 |
O1 | 0.039 | 38.31 | 173.66 | K1 | 0.042 | 32.01 | 218.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Shi, H.; Ni, S. Application of BP Neural Networks in Tide Forecasting. Atmosphere 2022, 13, 1999. https://doi.org/10.3390/atmos13121999
Xu H, Shi H, Ni S. Application of BP Neural Networks in Tide Forecasting. Atmosphere. 2022; 13(12):1999. https://doi.org/10.3390/atmos13121999
Chicago/Turabian StyleXu, Haotong, Hongyuan Shi, and Shiquan Ni. 2022. "Application of BP Neural Networks in Tide Forecasting" Atmosphere 13, no. 12: 1999. https://doi.org/10.3390/atmos13121999
APA StyleXu, H., Shi, H., & Ni, S. (2022). Application of BP Neural Networks in Tide Forecasting. Atmosphere, 13(12), 1999. https://doi.org/10.3390/atmos13121999