Spatial–Temporal Analysis of a Summer Heat Wave Associated with Downslope Flows in Southern Brazil: Implications in the Atmospheric Boundary Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Meteorological Observations and Reanalysis Data
2.3. Identification of DW and HW
3. Results and Discussion
3.1. Spatial Structure
3.2. Temporal Structure
3.3. Vertical Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABL | Atmospheric Boundary Layer |
CPC | Climate Prediction Center |
DW | Downslope winds |
HW | Heat Wave |
LST | Local standard time |
RS | Rio Grande do Sul |
SM | Santa Maria |
UFSM | Federal University of Santa Maria |
References
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1992; Volume 416, p. 444. [Google Scholar]
- Grisogono, B.; Belušić, D. A review of recent advances in understanding the mesoand microscale properties of the severe Bora wind. Tellus A Dyn. Meteorol. Oceanogr. 2009, 61, 1–16. [Google Scholar] [CrossRef]
- Babić, N.; Večenaj, Ž.; Kozmar, H.; Horvath, K.; De Wekker, S.F.; Grisogono, B. On turbulent fluxes during strong winter bora wind events. Bound.-Layer Meteorol. 2016, 158, 331–350. [Google Scholar] [CrossRef]
- Smith, R.B. 100 Years of Progress on Mountain Meteorology Research. Meteorol. Monogr. 2019, 59, 20–21. [Google Scholar] [CrossRef]
- Arrillaga Mitxelena, J.A.; Yagüe Anguis, C.; Román Cascón, C.; Sastre Marugán, M.; Jiménez, M.A.; Maqueda Burgos, G.; Vilà-Guerau de Arellano, J. From weak to intense downslope winds: Origin, interaction with boundary-layer turbulence and impact on CO2 variability. Atmos. Chem. Phys. 2019, 19, 4615–4635. [Google Scholar] [CrossRef] [Green Version]
- Stefanello, M.; de Lima Nascimento, E.; da Rosa, C.E.; Degrazia, G.; Mortarini, L.; Cava, D. A Micrometeorological Analysis of the Vento Norte Phenomenon in Southern Brazil. Bound.-Layer Meteorol. 2020, 176, 415–439. [Google Scholar] [CrossRef]
- da Rosa, C.E.; Stefanello, M.; Maldaner, S.; Facco, D.S.; Roberti, D.R.; Tirabassi, T.; Degrazia, G.A. Employing Spectral Analysis to Obtain Dispersion Parameters in an Atmospheric Environment Driven by a Mesoscale Downslope Windstorm. Int. J. Environ. Res. Public Health 2021, 18, 13027. [Google Scholar] [CrossRef]
- da Rosa, C.E.; Stefanello, M.; de Lima Nascimento, E.; Rossi, F.D.; Roberti, D.R.; Degrazia, G.A. Meteorological observations of the Vento Norte phenomenon in the central region of Rio Grande do Sul. Rev. Bras. Meteorol. 2021, 36, 367–376. [Google Scholar] [CrossRef]
- Večenaj, Ž.; Malečić, B.; Grisogono, B. Estimation of Turbulent Triplet Covariances for Bora Flows. Fluids 2021, 6, 452. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Hatchett, B.J.; Fox-Hughes, P.; Gershunov, A.; Nauslar, N.J. Global climatology of synoptically-forced downslope winds. Int. J. Climatol. 2021, 41, 31–50. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Li, X.; Wang, X.; Wang, D. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Nishi, A.; Kusaka, H. Effect of foehn wind on record-breaking high temperature event (41.1 °C) at Kumagaya on 23 July 2018. Sola 2019, 15, 17–21. [Google Scholar] [CrossRef] [Green Version]
- da Rosa, C.E.; Stefanello, M.; dos Reis Facco, N.C.S.; Stefanello, D.; Ferraz, S.T.; Boiaski, N.T.; Herdies, D.; Degrazia, G.A. Winter heat waves characteristics associated with downslope windstorm in south Brazil. Int. J. Climatol. 2023, submitted.
- Smith, C.; Hatchett, B.J.; Kaplan, M. A surface observation based climatology of Diablo-like winds in California’s Wine Country and western Sierra Nevada. Fire 2018, 1, 25. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, L.; Malig, B.; Guzman-Morales, J.; Guirguis, K.; Ilango, S.D.; Sheridan, P.; Gershunov, A.; Basu, R.; Benmarhnia, T. The health burden fall, winter and spring extreme heat events in the in Southern California and contribution of Santa Ana Winds. Environ. Res. Lett. 2020, 15, 054017. [Google Scholar] [CrossRef]
- Chow, F.K.; De Wekker, S.F.; Snyder, B.J. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Springer: Berlin/Heidelberg, Germany, 2013; Volume 750. [Google Scholar]
- Elvidge, A.D.; Renfrew, I.A. The causes of foehn warming in the lee of mountains. Bull. Am. Meteorol. Soc. 2016, 97, 455–466. [Google Scholar] [CrossRef] [Green Version]
- da Rosa, C.E.; Stefanello, M.; Facco, D.S.; Roberti, D.R.; Rossi, F.D.; Nascimento, E.d.L.; Degrazia, G.A. Regional-scale meteorological characteristics of the Vento Norte phenomenon observed in Southern Brazil. Environ. Fluid Mech. 2022, 22, 819–837. [Google Scholar] [CrossRef]
- Durran, D.R. Mountain waves and downslope winds. In Atmospheric Processes over Complex Terrain; Springer: Berlin/Heidelberg, Germany, 1990; pp. 59–81. [Google Scholar]
- Strauss, L.; Serafin, S.; Haimov, S.; Grubišić, V. Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Q. J. R. Meteorol. Soc. 2015, 141, 3207–3225. [Google Scholar] [CrossRef]
- Durran, D. MOUNTAIN METEOROLOGY | Downslope Winds. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G.R., Pyle, J., Zhang, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 69–74. [Google Scholar] [CrossRef]
- Carvalho, L.; Duine, G.J.; Jones, C.; Zigner, K.; Clements, C.; Kane, H.; Gore, C.; Bell, G.; Gamelin, B.; Gomberg, D.; et al. The sundowner winds experiment (SWEX) pilot study: Understanding downslope windstorms in the Santa Ynez Mountains, Santa Barbara, California. Mon. Weather Rev. 2020, 148, 1519–1539. [Google Scholar] [CrossRef]
- Duine, G.J.; Jones, C.; Carvalho, L.M.; Fovell, R.G. Simulating Sundowner winds in coastal Santa Barbara: Model validation and sensitivity. Atmosphere 2019, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Giorgetta, M.A. A large-eddy simulation study on the diurnally evolving nonlinear trapped lee waves over a two-dimensional steep mountain. J. Atmos. Sci. 2021, 78, 399–415. [Google Scholar] [CrossRef]
- Bozkurt, D.; Rojas, M.; Boisier, J.P.; Rondanelli, R.; Garreaud, R.; Gallardo, L. Dynamical downscaling over the complex terrain of southwest South America: Present climate conditions and added value analysis. Clim. Dyn. 2019, 53, 6745–6767. [Google Scholar] [CrossRef]
- Demortier, A.; Bozkurt, D.; Jacques-Coper, M. Identifying key driving mechanisms of heat waves in central Chile. Clim. Dyn. 2021, 57, 2415–2432. [Google Scholar] [CrossRef]
- Turner, J.; Lu, H.; King, J.C.; Carpentier, S.; Lazzara, M.; Phillips, T.; Wille, J. An extreme high temperature event in coastal East Antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett. 2022, 49, e2021GL097108. [Google Scholar] [CrossRef]
- Duine, G.J.; Carvalho, L.M.; Jones, C. Mesoscale patterns associated with two distinct heatwave events in coastal Santa Barbara, California, and their impact on local fire risk conditions. Weather Clim. Extrem. 2022, 37, 100482. [Google Scholar] [CrossRef]
- Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. Climatol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Michelozzi, P.; De’Donato, F.; Accetta, G.; Forastiere, F.; d’Ovidio, M.; Perucci, C.; Kalkstein, L. Impact of heat waves on mortality-Rome, Italy, June-August 2003 (Reprinted from MMWR, vol 53, pg 369–371, 2004). JAMA-J. Am. Med Assoc. 2004, 291, 2537–2538. [Google Scholar]
- Ghobadi, A.; Khosravi, M.; Tavousi, T. Surveying of heat waves impact on the urban heat islands: Case study, the Karaj City in Iran. Urban Clim. 2018, 24, 600–615. [Google Scholar]
- dos Reis, N.C.S.; Boiaski, N.T.; Ferraz, S.E.T. Characterization and spatial coverage of heat waves in subtropical Brazil. Atmosphere 2019, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Ambrizzi, T.; Barreto, N.; Cunha, A.P.; Ramos, A.M.; Skansi, M.; Molina Carpio, J.; Salinas, R. The heat wave of October 2020 in central South America. Int. J. Climatol. 2021, 42, 2281–2298. [Google Scholar]
- Garcia de Araújo, G.R.; Frassoni, A.; Sapucci, L.F.; Bitencourt, D.; de Brito Neto, F.A. Climatology of heatwaves in South America identified through ERA5 reanalysis data. Int. J. Climatol. 2022. [Google Scholar] [CrossRef]
- Pezza, A.B.; Van Rensch, P.; Cai, W. Severe heat waves in Southern Australia: Synoptic climatology and large scale connections. Clim. Dyn. 2012, 38, 209–224. [Google Scholar] [CrossRef]
- Geirinhas, J.L.; Trigo, R.M.; Libonati, R.; Coelho, C.A.; Palmeira, A.C. Climatic and synoptic characterization of heat waves in Brazil. Int. J. Climatol. 2018, 38, 1760–1776. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Santanello, J.A., Jr.; Pan, Z.; Gao, Z.; Li, D. Aircraft observed diurnal variations of the planetary boundary layer under heat waves. Atmos. Res. 2020, 235, 104801. [Google Scholar] [CrossRef]
- An, N.; Zuo, Z. Investigating the influence of synoptic circulation patterns on regional dry and moist heat waves in North China. Clim. Dyn. 2021, 57, 1227–1240. [Google Scholar] [CrossRef]
- Miralles, D.G.; Teuling, A.J.; Van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Horton, R.M.; Mankin, J.S.; Lesk, C.; Coffel, E.; Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Chang. Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef] [Green Version]
- Ruthrof, K.X.; Breshears, D.D.; Fontaine, J.B.; Froend, R.H.; Matusick, G.; Kala, J.; Miller, B.P.; Mitchell, P.J.; Wilson, S.K.; van Keulen, M.; et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 2018, 8, 13094. [Google Scholar] [CrossRef]
- Thompson, R.; Hornigold, R.; Page, L.; Waite, T. Associations between high ambient temperatures and heat waves with mental health outcomes: A systematic review. Public Health 2018, 161, 171–191. [Google Scholar] [CrossRef]
- Breshears, D.D.; Fontaine, J.B.; Ruthrof, K.X.; Field, J.P.; Feng, X.; Burger, J.R.; Law, D.J.; Kala, J.; Hardy, G.E.S.J. Underappreciated plant vulnerabilities to heat waves. New Phytol. 2021, 231, 32–39. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.K.; Rogelj, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Summary 2021. Available online: https://elib.dlr.de/137584/ (accessed on 10 July 2022).
- Marengo, J.A.; Camargo, C.C. Surface air temperature trends in Southern Brazil for 1960–2002. Int. J. Climatol. 2008, 28, 893–904. [Google Scholar] [CrossRef]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Romero, C.P.; Carmona-Moreno, C. Magnitude and frequency of heat and cold waves in recent decades: The case of South America. Nat. Hazards Earth Syst. Sci. 2016, 16, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Bitencourt, D.P.; Fuentes, M.V.; Franke, A.E.; Silveira, R.B.; Alves, M.P. The climatology of cold and heat waves in Brazil from 1961 to 2016. Int. J. Climatol. 2020, 40, 2464–2478. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Do Meio Ambiente e Insfraestrutura do Rio Grande do Sul SEMA, S. Estiagem 2020/2021/2022. Available online: https://sema.rs.gov.br/estiagem-rs (accessed on 18 October 2022).
- INMET NOTA METEOROLÓGICA 14/01/2022: Onda de Calor Atinge seu Auge e máXimas Passam dos 40 °C no Rio Grande do Sul. Technical Report, Brazilian National Institute of Meteorology INMET. Available online: https://portal.inmet.gov.br/notasTecnicas (accessed on 18 October 2022).
- INMET NOTA METEOROLÓGICA 17/01/2022: Onda de Calor Bate Novos Recordes e Temperatura Alcança os 41.8 °C no Rio Grande do Sul. Technical Report, Brazilian National Institute of Meteorology INMET. Available online: https://portal.inmet.gov.br/notasTecnicas (accessed on 18 October 2022).
- INMET NOTA METEOROLÓGICA 20/01/2022: Onda de Calor Persiste no Estado do Rio Grande do Sul. Technical Report, Brazilian National Institute of Meteorology INMET. Available online: https://portal.inmet.gov.br/notasTecnicas (accessed on 18 October 2022).
- Alvarez, M.S.; Cerne, B.; Osman, M.; Vera, C.S. Intraseasonal and low frequency processes contributing to the December 2013 heat wave in Southern South America. Clim. Dyn. 2019, 53, 4977–4988. [Google Scholar] [CrossRef]
- Sun, X.; Cook, K.H.; Vizy, E.K. The South Atlantic subtropical high: Climatology and interannual variability. J. Clim. 2017, 30, 3279–3296. [Google Scholar] [CrossRef]
- Zigner, K.; Carvalho, L.M.; Jones, C.; Duine, G.J. Extreme winds and fire weather in coastal Santa Barbara County, CA: An observational analysis. Int. J. Climatol. 2022, 42, 597–618. [Google Scholar] [CrossRef]
- Degrazia, G.A.; Rizza, U.; Stefanello, M.; Maldaner, S.; Roberti, D.R.; Martins, L.G.N.; Anabor, V.; Puhales, F.S.; Dal Piva, E.; Acevedo, O.C.; et al. An overview of the micrometeorological field campaign at Santa Maria, Southern Brazil: The Pampa-2016 experiment. Meteorol. Appl. 2018, 25, 435–444. [Google Scholar] [CrossRef] [Green Version]
- André, J.; Mahrt, L. The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci. 1982, 39, 864–878. [Google Scholar] [CrossRef]
- Vera, C.; Baez, J.; Douglas, M.; Emmanuel, C.; Marengo, J.; Meitin, J.; Nicolini, M.; Nogues-Paegle, J.; Paegle, J.; Penalba, O.; et al. The South American low-level jet experiment. Bull. Am. Meteorol. Soc. 2006, 87, 63–78. [Google Scholar] [CrossRef]
- Andreas, E.L.; Claffy, K.J.; Makshtas, A.P. Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteorol. 2000, 97, 459–486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanello, M.; da Rosa, C.E.; Bresciani, C.; dos Reis, N.C.S.; Facco, D.S.; Ferraz, S.E.T.; Boiaski, N.T.; Herdies, D.L.; Acevedo, O.; Tirabassi, T.; et al. Spatial–Temporal Analysis of a Summer Heat Wave Associated with Downslope Flows in Southern Brazil: Implications in the Atmospheric Boundary Layer. Atmosphere 2023, 14, 64. https://doi.org/10.3390/atmos14010064
Stefanello M, da Rosa CE, Bresciani C, dos Reis NCS, Facco DS, Ferraz SET, Boiaski NT, Herdies DL, Acevedo O, Tirabassi T, et al. Spatial–Temporal Analysis of a Summer Heat Wave Associated with Downslope Flows in Southern Brazil: Implications in the Atmospheric Boundary Layer. Atmosphere. 2023; 14(1):64. https://doi.org/10.3390/atmos14010064
Chicago/Turabian StyleStefanello, Michel, Cinara Ewerling da Rosa, Caroline Bresciani, Nicolle Cordero Simões dos Reis, Douglas Stefanello Facco, Simone E. Teleginski Ferraz, Nathalie Tissot Boiaski, Dirceu Luis Herdies, Otávio Acevedo, Tiziano Tirabassi, and et al. 2023. "Spatial–Temporal Analysis of a Summer Heat Wave Associated with Downslope Flows in Southern Brazil: Implications in the Atmospheric Boundary Layer" Atmosphere 14, no. 1: 64. https://doi.org/10.3390/atmos14010064
APA StyleStefanello, M., da Rosa, C. E., Bresciani, C., dos Reis, N. C. S., Facco, D. S., Ferraz, S. E. T., Boiaski, N. T., Herdies, D. L., Acevedo, O., Tirabassi, T., Roberti, D. R., & Degrazia, G. A. (2023). Spatial–Temporal Analysis of a Summer Heat Wave Associated with Downslope Flows in Southern Brazil: Implications in the Atmospheric Boundary Layer. Atmosphere, 14(1), 64. https://doi.org/10.3390/atmos14010064