Optimization of Discharging Electrodes of a Multi-Chamber Electrostatic Precipitator for Small Heat Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concept of an Investigated Electrostatic Precipitator
2.2. Boundary Conditions of the Model
2.3. Numerical Simulations
2.4. Numerical Calculations of Precipitator Theoretical Efficiency
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Floros, F. Green Energy in Europe and SocioEconomic Impact. J. Manag. Strategy 2022, 13, 31. [Google Scholar] [CrossRef]
- Pezzuto, I. An Analysis of the Recent Eurozone Recovery: Is It Sustainable? J. Gov. Regul. 2017, 6, 2017. [Google Scholar] [CrossRef] [Green Version]
- Taušová, M.; Tauš, P.; Domaracká, L. Sustainable Development According to Resource Productivity in the EU Environmental Policy Context. Energies 2022, 15, 4291. [Google Scholar] [CrossRef]
- Jianhui, J.; Haddad, I.E.; Prévôt, A.S.H. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Peters, R.; Ee, N.; Peters, J.; Anstey, K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimer´s Dis. 2019, 70, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pryor, J.T.; Cowley, L.O.; Simonds, S.E. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front. Public Health 2022, 10, 882569. [Google Scholar] [CrossRef] [PubMed]
- Kovalová, D.F.; Ďurčanská, D.; Hegrová, J. Impact of Asphalt Mixture Composition on Particulate Matter Production. Procedia Eng. 2017, 192, 201–206. [Google Scholar] [CrossRef]
- Pospisil, J.; Huzlik, J.; Licbinsky, R.; Spilacek, M. Dispersion characteristics of PM10 particles identified by numerical simulation in the vicinity of roads passing through various types of urban areas. Atmosphere 2020, 11, 454. [Google Scholar] [CrossRef]
- Europe’s Air Quality Status 2022, Briefing no. 04/2022. Available online: https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022 (accessed on 25 November 2022).
- Slovak Hydrometeorological Institute, Department of Emissions and Biofuels. 2022. Available online: https://www.enviroportal.sk/indicator/detail?id=141 (accessed on 25 November 2022).
- Chabadova, J.; Papucik, S.; Nosek, R. Particle Emissions from Biomass Combustion. AIP Conf. Proc. 2014, 1608, 67–70. [Google Scholar] [CrossRef]
- Klement, I.; Vilkovská, T.; Uhrín, M.; Baranski, J.; Konopka, A. Impact of high temperature drying process on beech wood containing tension wood. Open Eng. 2019, 9, 428–433. [Google Scholar] [CrossRef]
- Tarasov, D.A.; Firsov, A.A. CFD simulation of DC-discharge in airflow. J. Phys. Conf. Ser. 2021, 2100, 012015. [Google Scholar] [CrossRef]
- Dhayef, H.K.; Khalaf, T. Simulation of a Corona Discharge in a Wire-Duct Electrostatic Precipitator. Project: Plasma Phys. 2022, 21, 4603–4614. [Google Scholar]
- Kawamoto, H.; Kobayakawa, T.; Ogino, Y.; Takabori, K. Electrostatic Precipitator in Martian Environment. Proc. Space Eng. Conf. 2018, 28, 1B2. [Google Scholar] [CrossRef]
- Skodras, G.; Kaldis, S.P.; Sofialidis, D. Particulate removal via electrostatic precipitators—CFD simulation. Fuel Process. Technol. 2006, 87, 623–631. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, F.; Zhang, Y.; Li, S. Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators. Powder Technol. 2018, 330, 210–218. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, F.; Zhang, Y.; Shang, Y.; Li, S. Numerical study on electrohydrodynamic flow and fine-particle collection efficiency in a spike electrode-plate electrostatic precipitator. Powder Technol. 2019, 351, 71–83. [Google Scholar] [CrossRef]
- Tamura, R.; Ito, K.; Date, Y.; Taoka, T. Simulation and Measurement of Particle Trajectory in an Electrostatic Precipitator with Multiple Wire Electrodes. IEEE Trans. Ind. Appl. 2022, 58, 2452–2461. [Google Scholar] [CrossRef]
- Knight, R.; Zhao, L.W.; Zhu, H. Modelling and optimization of a wire-plate ESP for mitigation of poultry PM emission using COMSOL. Biosyst. Eng. 2021, 211, 35–49. [Google Scholar] [CrossRef]
- Beckers, S.C.; Pawlik, J.; Eren, H.; Kiel, J. Simulation of a Discharge Electrode Needle for Particle Charging in an Electrostatic Precipitator. SNE Simul. Notes Eur. 2021, 31, 233–238. [Google Scholar] [CrossRef]
- Arif, S.; Branken, D.J.; Everson, R.C.; Arif, A. An experimentally validated computational model to predict the performance of a single-channel laboratory-scale electrostatic precipitator equipped with spiked and wire discharge electrodes. J. Electrost. 2021, 112, 103595. [Google Scholar] [CrossRef]
- Lee, G.H.; Hwang, S.Y.; Cheon, T.W.; Yook, S.J. Optimization of pipe-and-spike discharge electrode shape for improving electrostatic precipitator collection efficiency. Powder Technol. 2020, 379, 241–250. [Google Scholar] [CrossRef]
- Böhm, J. Elektrické Odlučovače; Müszaki Könyvkiadó (MLR), SNTL–Nakladatelství technické literatury (Č SSR), Verlag Technik (NDR): Praha, Czech Republic, 1977; 327p. [Google Scholar]
- Rimar, M.; Fedak, M.; Kulikov, A.; Kulikova, O.; Lopusniak, M. Analysis and CFD Modeling of Thermal Collectors with a Tracker System. Energies 2022, 15, 6586. [Google Scholar] [CrossRef]
- Kılıç, M.; Mutlu, M.; Altun, A.F. Numerical Simulation and Analytical Evaluation of the Collection Efficiency of the Particles in a Gas by the Wire-Plate Electrostatic Precipitators. Appl. Sci. 2022, 12, 6401. [Google Scholar] [CrossRef]
- Holubčík, M.; Jandačka, J.; Ďurčanský, P.; Čaja, A. Particulate matter measurement by using the particle sizers APS and SMPS. EAI Endorsed Trans. Energy Web. 2020, 8, 166000. [Google Scholar] [CrossRef]
- Carroll, J.; Finnan, J. Use of electrostatic precipitators in small-scale biomass furnaces to reduce particulate emissions from a range of feedstocks. Biosyst. Eng. 2017, 163, 94–102. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Guo, Y.; Shen, Z.; Yang, Z.; Liu, S.; Liang, C.H.; Zheng, C.H. Balance and stability between particle collection and re-entrainment in a wide temperature-range electrostatic precipitator. Powder Technol. 2018, 340, 543–552. [Google Scholar] [CrossRef]
Length of Precipitator 1 m | Collecting Area [m2] |
---|---|
Tubular precipitator with one ionization electrode and one collecting electrode Ø = 300 mm | 0.94 |
Tubular precipitator with four ionization electrodes and one collecting electrode Ø = 300 mm with cross-shaped partition | 2.14 |
Quantity | Value |
E0c | 5.23 × 106 V·m−1 |
U0c | 3.59 × 104 V |
z (at a supply voltage of 20 kV) | 0.94 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holubčík, M.; Drga, J.; Čajová Kantová, N.; Najser, J.; Frantík, J. Optimization of Discharging Electrodes of a Multi-Chamber Electrostatic Precipitator for Small Heat Sources. Atmosphere 2023, 14, 63. https://doi.org/10.3390/atmos14010063
Holubčík M, Drga J, Čajová Kantová N, Najser J, Frantík J. Optimization of Discharging Electrodes of a Multi-Chamber Electrostatic Precipitator for Small Heat Sources. Atmosphere. 2023; 14(1):63. https://doi.org/10.3390/atmos14010063
Chicago/Turabian StyleHolubčík, Michal, Juraj Drga, Nikola Čajová Kantová, Jan Najser, and Jaroslav Frantík. 2023. "Optimization of Discharging Electrodes of a Multi-Chamber Electrostatic Precipitator for Small Heat Sources" Atmosphere 14, no. 1: 63. https://doi.org/10.3390/atmos14010063
APA StyleHolubčík, M., Drga, J., Čajová Kantová, N., Najser, J., & Frantík, J. (2023). Optimization of Discharging Electrodes of a Multi-Chamber Electrostatic Precipitator for Small Heat Sources. Atmosphere, 14(1), 63. https://doi.org/10.3390/atmos14010063