Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Hunga Shockwave over the Mediterranean
3.2. Lower Atmosphere Response
3.3. Upper Atmosphere Response
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenna, M.; Cronin, S.J.; Smith, I.E.M.; Pontesilli, A.; Tost, M.; Barker, S.; Tonga’onevai, S.; Kula, T.; Vaiomounga, R. Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific. Lithos 2022, 412–413, 106614. [Google Scholar] [CrossRef]
- Yuen, D.A.; Scruggs, M.A.; Spera, F.J.; Zheng, Y.; Hu, H.; McNutt, S.R.; Thompson, G.; Mandli, K.; Keller, B.R.; Wei, S.S.; et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthquake Res. Adv. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Carvajal, M.; Sepúlveda, I.; Gubler, A.; Garreaud, R. Worldwide signature of the 2022 Tonga volcanic tsunami. Geophys. Res. Lett. 2022, 49, e2022GL098153. [Google Scholar] [CrossRef]
- Xu, J.; Li, D.; Bai, Z.; Tao, M.; Bian, J. Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption. Atmosphere 2022, 13, 912. [Google Scholar] [CrossRef]
- Chen, C.-H.; Zhang, X.; Sun, Y.-Y.; Wang, F.; Liu, T.-C.; Lin, C.-Y.; Gao, Y.; Lyu, J.; Jin, X.; Zhao, X.; et al. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga-Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. Remote Sens. 2022, 14, 2179. [Google Scholar] [CrossRef]
- Astafyeva, E.; Maletckii, B.; Mikesell, T.D.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 2022, 49, e2022GL098827. [Google Scholar] [CrossRef]
- Astafyeva, E. Ionospheric Detection of Natural Hazards. Rev. Geophys. 2019, 57, 1265–1288. [Google Scholar] [CrossRef]
- Matoza, R.S.; Fee, D.; Assink, J.D.; Iezzi, A.M.; Green, D.N.; Kim, K.; Toney, L.; Lecocq, T.; Krishnamoorthy, S.; Lalande, J.-M.; et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022, 377, 95–100. [Google Scholar] [CrossRef]
- Harrison, G. Pressure anomalies from the January 2022 Hunga Tonga-Hunga Ha’apai eruption. Weather 2022, 77, 87–90. [Google Scholar] [CrossRef]
- Wright, C.J.; Hindley, N.P.; Alexander, M.J.; Barlow, M.; Hoffmann, L.; Mitchell, C.N.; Prata, F.; Bouillon, M.; Carstens, J.; Clerbaux, C.; et al. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption. Nature 2022. [Google Scholar] [CrossRef]
- Themens, D.R.; Watson, C.; Žagar, N.; Vasylkevych, S.; Elvidge, S.; McCaffrey, A.; Prikryl, P.; Reid, B.; Wood, A.; Jayachandran, P.T. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett. 2022, 49, e2022GL098158. [Google Scholar] [CrossRef]
- Hines, C.O. An interpretation of certain ionospheric motions in terms of atmospheric gravity waves. J. Geophys. Res. 1959, 64, 2210–2211. [Google Scholar] [CrossRef]
- Leitinger, R.; Rieger, M. The TID model for modulation of large scale electron density model. Ann. Geophys. 2005, 48, 515–523. [Google Scholar] [CrossRef]
- Hong, J.; Kil, H.; Lee, W.K.; Kwak, Y.S.; Choi, B.K.; Paxton, L.J. Detection of different properties of ionospheric perturbations in the vicinity of the Korean Peninsula after the Hunga-Tonga volcanic eruption on 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL099163. [Google Scholar] [CrossRef]
- Verhulst, T.G.; Altadill, D.; Barta, V.; Belehaki, A.; Burešová, D.; Cesaroni, C.; Galkin, I.; Guerra, M.; Ippolito, A.; Herekakis, T.; et al. Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano. J. Space Weather Space Clim. 2022, 12, 35. [Google Scholar] [CrossRef]
- Buonocunto, C.; D’Auria, L.; Caputo, A.; Martini, M.; Orazi, M. The InfraCyrus infrasound sensor. Rapp. Tec. INGV 2011, 188, 5–12. [Google Scholar]
- Baskaradas, J.A.; Bianchi, C.; Pezzopane, M.; Romano, V.; Sciacca, U.; Scotto, C.; Tutone, G.; Zuccheretti, E. New Low Power Pulse Compressed Ionosonde at Gibilmanna Ionospheric Observatory. Ann. Geophys.-ITALY 2005, 48, 445–451. [Google Scholar] [CrossRef]
- Upper atmosphere physics and radiopropagation Working Group; Marcocci, C.; Pezzopane, M.; Pica, E.; Romano, V.; Sabbagh, D.; Scotto, C.; Zuccheretti, E. Electronic Space Weather upper atmosphere database (eSWua)—HF data, version 1.0. Ist. Naz. Geofis. Vulcanol. (INGV) 2020. [Google Scholar] [CrossRef]
- RING—Rete Integrata Nazionale GNSS. Available online: https://ring.gm.ingv.it (accessed on 23 November 2022).
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S.M. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Cesaroni, C.; Spogli, L.; De Franceschi, G. IONORING: Real-Time Monitoring of the Total Electron Content over Italy. Remote Sens. 2021, 13, 3290. [Google Scholar] [CrossRef]
- Camarda, M.; Gurrieri, S.; Valenza, M. CO2 flux measurements in volcanic areas using the dynamic concentration method: Influence of soil permeability. J. Geophys. Res. 2006, 111, B05202. [Google Scholar] [CrossRef]
- Press, F.; Harkrider, D. Propagation of acoustic-gravity waves in the atmosphere. J. Geophys. Res. 1962, 67, 3889–3908. [Google Scholar] [CrossRef] [Green Version]
- Pierce, A.D.; Posey, J.W.; Iliff, E.F. Variation of nuclear explosion generated acoustic-gravity wave forms with burst height and with energy yield. J. Geophys. Res. 1971, 56, 5025–5042. [Google Scholar] [CrossRef]
- Madonia, P.; Romano, P.; Inguaggiato, S. Decoupling of ground level pressures observed in Italian volcanoes: Are they driven by space weather geo-effectiveness? Ann. Geophys. 2014, 57, S0324. [Google Scholar] [CrossRef]
- Auer, L.H.; Rosenberg, N.D.; Birdsell, K.H.; Whitney, E.M. The effects of barometric pumping on contaminant transport. J. Contam. Hydrol. 1996, 24, 145–166. [Google Scholar] [CrossRef]
- Camarda, M.; De Gregorio, S.; Capasso, G.; Di Martino, R.M.R.; Gurrieri, S.; Prano, V. The monitoring of natural soil CO2 emissions: Issues and perspectives. Earth Sci. Rev. 2019, 198, 102928. [Google Scholar] [CrossRef]
- Savastano, G.; Ravanelli, M. Real-Time Monitoring of Ionospheric Irregularities and TEC Perturbations. In Satellites Missions and Technologies for Geosciences; Demyanov, V., Becedas, J., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Pezzopane, M. Interpre: A Windows software for semiautomatic scaling of ionospheric parameters from ionograms. Comput. Geosci. 2004, 30, 125–130. [Google Scholar] [CrossRef]
- Titheridge, J.E. The real height analysis of ionograms: A generalized formulation. Radio Sci. 1988, 23, 831–849. [Google Scholar] [CrossRef]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Pezzopane, M.; Fagundes, P.R.; Ciraolo, L.; Correia, E.; Cabrera, M.A.; Ezquer, R.G. Unusual nighttime impulsive foF2 enhancement below the southern anomaly crest under geomagnetically quiet conditions. J. Geophys. Res. 2011, 116, A12314. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.S.; Kantor, I.J.; Sobral, J.H.A. Gravity wave induced ionization layers in the night F-region over Cachoeira Paulista (22° S, 45° W). J. Atmos. Terr. Phys. 1982, 44, 759–767. [Google Scholar] [CrossRef]
- Kirtskhalia, V.G. Speed of Sound in Atmosphere of the Earth. Open J. Acoust. 2012, 2, 80–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madonia, P.; Bonaccorso, A.; Bonforte, A.; Buonocunto, C.; Cannata, A.; Carleo, L.; Cesaroni, C.; Currenti, G.; De Gregorio, S.; Di Lieto, B.; et al. Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion. Atmosphere 2023, 14, 65. https://doi.org/10.3390/atmos14010065
Madonia P, Bonaccorso A, Bonforte A, Buonocunto C, Cannata A, Carleo L, Cesaroni C, Currenti G, De Gregorio S, Di Lieto B, et al. Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion. Atmosphere. 2023; 14(1):65. https://doi.org/10.3390/atmos14010065
Chicago/Turabian StyleMadonia, Paolo, Alessandro Bonaccorso, Alessandro Bonforte, Ciro Buonocunto, Andrea Cannata, Luigi Carleo, Claudio Cesaroni, Gilda Currenti, Sofia De Gregorio, Bellina Di Lieto, and et al. 2023. "Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion" Atmosphere 14, no. 1: 65. https://doi.org/10.3390/atmos14010065
APA StyleMadonia, P., Bonaccorso, A., Bonforte, A., Buonocunto, C., Cannata, A., Carleo, L., Cesaroni, C., Currenti, G., De Gregorio, S., Di Lieto, B., Guerra, M., Orazi, M., Pasotti, L., Peluso, R., Pezzopane, M., Restivo, V., Romano, P., Sciotto, M., & Spogli, L. (2023). Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion. Atmosphere, 14(1), 65. https://doi.org/10.3390/atmos14010065