Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees
Abstract
:1. Introduction
1.1. Background Introduction
1.2. Traditional Downscaling Methods
1.3. Machine Learning Downscaling Methods
2. Materials and Methods
2.1. Data Collection
2.1.1. GPM Satellite Precipitation Data
2.1.2. National Vegetation Zoning Data
2.1.3. Basic Geographical Data
2.2. Model Selection
2.3. Experimental Process
- (1)
- Detecting and eliminating outliers and missing values from the original 1 km resolution NDVI, DEM, temperature, and humidity datasets. Due to the sufficient amount of data, a very small number of outliers can be removed from the images.
- (2)
- Resampling the 1 km resolution NDVI, DEM, temperature, and humidity data and co-locating them with GPM satellite precipitation data. In this step, GPM satellite precipitation data are projected onto the WGS84 projection with a resolution of 10 km × 10 km. Therefore, by averaging all 1 km resolution surface feature data within each 10 km pixel, they are resampled to 10 km. Finally, the resampled 10 km resolution NDVI, DEM, temperature, humidity, and other surface feature data are combined with GPM satellite precipitation data values for the same location to generate data samples.
- (3)
- According to the downloaded vegetation zoning data of China, the generated 10 km resolution data samples are divided into 8 vegetation regions. Within each vegetation region, they are further divided by four seasons: spring, summer, autumn, and winter. This yields a total of 32 training samples: 8 regions × 4 seasons.
- (4)
- Using GPM satellite precipitation data as the target and the 10 km resolution NDVI, DEM, temperature, humidity, and other surface feature data as inputs, Extreme Random Tree models are established separately for each of the 4 seasons and 8 regions.
- (5)
- The 1 km resolution NDVI, DEM, temperature, humidity, and other surface feature data are input into the relationships obtained in step (4), resulting in high-resolution monthly precipitation predictions (Pre1km) for each vegetation region.
- (6)
- Residual correction is a necessary step in data-driven downscaling methods, which corrects the predicted precipitation. The monthly precipitation predictions (Pre1km) obtained in step (5) for each region are resampled to 10 km precipitation data using a mean-based method. The model’s residuals are obtained by subtracting the original GPM data from the resampled 10 km precipitation data.
- (7)
- Using kriging interpolation, the residuals generated in step (6) are interpolated to a spatial resolution of 1 km, and the interpolated residuals are added back to the Pre1km results generated in step (5) to obtain the final precipitation results. This step is performed using ArcGIS (Version: 10.7) software.
- (8)
- According to the distribution of meteorological stations in China, the locations of the stations are selected as sample points, and corresponding predicted values and observed values are extracted for accuracy evaluation.
2.4. Evaluation Metrics
3. Results
3.1. Downscaling Model Accuracy Evaluation
3.2. Downscaling Results and Analysis
4. Conclusions
- (1)
- By partitioning the study area based on months and vegetation elements, the Extreme Random Trees algorithm outperforms the global downscaling method used in traditional downscaling algorithms, as well as kriging interpolation, in precipitation downscaling. Compared to the original method, the proposed approach in this paper exhibits superior performance. This indicates that geographic location, vegetation type, and season have significant value in calibrating satellite precipitation amounts during downscaling of satellite precipitation datasets.
- (2)
- In the process of downscaling using satellite precipitation data, we discovered that in southeastern and southern China, including warm–temperate deciduous broad-leaved forests, subtropical evergreen broad-leaved forests, and tropical monsoon rainforests, regions characterized by high temperatures and abundant rainfall, and susceptible to typhoon influence, the GPM satellite precipitation data tend to overestimate actual precipitation. Conversely, in western and northern China, including cold–temperate coniferous forests, temperate mixed forests of coniferous and deciduous trees, temperate deserts, temperate grasslands, and the cold alpine vegetation of the Qinghai–Tibet Plateau, regions with relatively low precipitation, lower temperatures, lower soil humidity, and faster water evaporation, the GPM satellite precipitation data tend to underestimate actual precipitation. When an appropriate regression model is applied to regress the satellite precipitation dataset, the accuracy of the original satellite precipitation dataset significantly influences the performance of the downscaling algorithm.
- (3)
- Residual correction is a crucial step in the execution of our proposed downscaling algorithm. As evidenced by the results, downscaled results after residual correction are superior to those without residual correction. Therefore, in future downscaling research, attention should be given to residual correction when utilizing our proposed method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groisman, P.Y. Changes in the probability of extreme precipitation: Important indicators of climatic change. Clim. Chang. 1999, 42, 243–283. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, Q.; Xu, C.Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J. Hydrol. 2012, 426–427, 28–38. [Google Scholar] [CrossRef]
- Li, L.; Hong, Y.; Wang, J.; Adler, R.F.; Policelli, F.S.; Habib, S.; Irwn, D.; Korme, T.; Okello, L. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat. Hazards 2009, 50, 109–123. [Google Scholar] [CrossRef]
- Brunsell, N.A. Characterization of land-surface precipitation feedback regimes with remote sensing. Remote Sens. Environ. 2006, 100, 200–211. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.; Zhu, L.; Wang, Y.; He, Z. Spatial Downscaling of Remote Sensing Precipitation Data in the Beijing-Tianjin-Hebei Region. J. Comput. Commun. 2021, 9, 191–202. [Google Scholar] [CrossRef]
- Okamoto, K.; Miyazaki, S.; Ishida, T. Remote sensing of precipitation by a satellite-borne microwave remote sensor. Acta Astronaut. 1979, 6, 1043–1060. [Google Scholar] [CrossRef]
- Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol. Process. 2011, 25, 1924–1933. [Google Scholar] [CrossRef]
- Foody, G.M. Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–rainfall relationship. Remote Sens. Environ. 2003, 88, 283–293. [Google Scholar] [CrossRef]
- Guan, H.; Wilson, J.L.; Xie, H. A cluster-optimizing regression-based approach for precipitation spatial downscaling in mountainous terrain. J. Hydrol. 2009, 375, 578–588. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Schmidli, J.; Goodess, C.M.; Frei, C.; Haylock, M.R.; Hundecha, Y.; Ribalaygua, J.; Schmith, T. Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J. Geophys. Res. Atmos. 2007, 112, D4. [Google Scholar] [CrossRef]
- Marquínez, J.; Lastra, J.; García, P. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis. J. Hydrol. 2003, 270, 1–11. [Google Scholar] [CrossRef]
- Zhang, T.; Li, B.; Yuan, Y.; Gao, X.; Sun, Q.; Xu, L.; Jiang, Y. Spatial downscaling of TRMM precipitation data considering the impacts of macro-geographical factors and local elevation in the Three-River Check for updates Headwaters Region. Remote Sens. Environ. 2018, 215, 109–127. [Google Scholar] [CrossRef]
- Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Stein, M.L. Interpolation of Spatial Data; Springer: New York, NY, USA, 2006; Volume 45, pp. 238–240. [Google Scholar]
- Wang, S.; Yan, D.H.; Qin, T.L.; Ru-hai, L. Spatial interpolation of precipitation using the PER-Kriging method. Adv. Water Sci. 2011, 22, 756–763. [Google Scholar]
- Hutchinson, M.F. Interpolating Mean Rainfall Using Thin Plate Smoothing Splines. Int. J. Geogr. Inf. Syst. 1995, 9, 385–403. [Google Scholar] [CrossRef]
- Park, N.W. Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables. Adv. Meteorol. 2013, 2013, 187–190. [Google Scholar] [CrossRef]
- Lu, X.; Tang, G.; Wang, X.; Liu, Y.; Wei, M.; Zhang, Y. The Development of a Two-Step Merging and Downscaling Method for Satellite Precipitation Products. Remote Sens. 2020, 12, 398. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E. Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int. J. Climatol. 1998, 18, 1031–1047. [Google Scholar] [CrossRef]
- Troutman, B.M. An analysis of input errors in precipitation-runoff models using regression with errors in the independent variables. Water Resour. Res. 1982, 18, 947–964. [Google Scholar] [CrossRef]
- Jia, S.F.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewsk, B.; Lima, M.; Kausrud, K.L. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Ji, T.; Liu, R.; Yang, H.; He, T.; Wu, J. Spatial Downscaling of Precipitation Using Multi-source Remote Sensing Data: A Case Study of Sichuan-Chongqing Region. J. Geo-Inf. Sci. 2015, 17, 108–117. [Google Scholar]
- Zhang, Q.; Shi, P.; Singh, V.P.; Fan, K.; Huang, J. Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China. Int. J. Climatol. 2017, 37, 3895–3909. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Farrar, T.J. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens. Environ. 1994, 50, 107–120. [Google Scholar] [CrossRef]
- Xu, C.; Liu, C.; Zhang, W.; Li, Z.; An, B. Downscaling and Merging of Daily Scale Satellite Precipitation Data in the Three River Headwaters Region Fused with Cloud Attributes and Rain Gauge Data. Water 2023, 15, 1233. [Google Scholar] [CrossRef]
- Haji-Aghajany, S.; Amerian, Y.; Amiri-Simkooei, A. Function-Based Troposphere Tomography Technique for Optimal Downscaling of Precipitation. Remote Sens. 2022, 14, 2548. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.P.; Huang, G.H.; Wang, H.; Li, Y.F.; Liu, Y.R.; Shen, Z.Y. A novel statistical downscaling approach for analyzing daily precipitation and extremes under the impact of climate change: Application to an arid region. J. Hydrol. 2022, 615, 128730. [Google Scholar] [CrossRef]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Dietterich, T.G. Machine-learning research. Ai Mag. 1997, 18, 97. [Google Scholar]
- Bonnet, S.M.; Evsukoff, A.; Rodriguez, C.A. Precipitation Nowcasting with Weather Radar Images and Deep Learning in Sao Paulo, Brasil. Atmosphere 2020, 11, 1157. [Google Scholar] [CrossRef]
- Yan, X.; Chen, H.; Tian, B.; Sheng, S.; Wang, J.; Kim, J.-S. A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging. Remote Sens. 2021, 13, 2040. [Google Scholar] [CrossRef]
- Jing, W.L.; Zhang, P.Y.; Jiang, H.; Zhao, X. Reconstructing Satellite-Based Monthly Precipitation over Northeast China Using Machine Learning Algorithms. Remote Sens. 2017, 9, 781. [Google Scholar] [CrossRef]
- Chiu, L.S.; Shin, D.B.; Kwiatkowski, J. Earth Science Satellite Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zhang, X.X.; Liu, G.D.; Wang, H.T.; Li, X.D. Application of a Hybrid Interpolation Method Based on Support Vector Machine in the Precipitation Spatial Interpolation of Basins. Water 2017, 9, 760. [Google Scholar] [CrossRef]
- Chen, F.H.; Wu, S.; Cui, P.; Cai, Y.; Zhang, Y.; Yin, Y.; Liu, G.; Ouyang, Z.; Ma, W.; Yang, L.; et al. Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019). J. Geogr. Sci. 2021, 31, 3–45. [Google Scholar] [CrossRef]
- Sharifi, E.; Saghafian, B.; Steinacker, R. Downscaling Satellite Precipitation Estimates With Multiple Linear Regression, Artificial Neural Networks, and Spline Interpolation Techniques. J. Geophys. Res. Atmos. 2019, 124, 789–805. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Jing, W.L.; Yang, Y.P.; Yue, X.F.; Zhao, X.D. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China. Remote Sens. 2016, 8, 835. [Google Scholar] [CrossRef]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Dong, W.J. Impact of land cover/use change on regional climate over China. J. Grad. Sch. Chin. Acad. Sci. 2007, 24, 5. [Google Scholar]
- Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China. Adv. Meteorol. 2015, 2015, 410198. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Liu, Q.; Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int. J. Remote Sens. 2014, 35, 3074–3093. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Udahogora, M.; Umwali, E.D.; Nyirarwasa, A.; Umuhoza, J. A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa. Int. J. Geo-Inf. 2021, 10, 129. [Google Scholar] [CrossRef]
- Danandeh, M.A.; Nourani, V. Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling. Water Resour. Manag. 2018, 32, 2665–2679. [Google Scholar] [CrossRef]
- Zeng, N.; Neelin, J.D.; Lau, K.M.; Tucker, C.J. Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction. Science 1999, 286, 1537–1540. [Google Scholar] [CrossRef]
- Chang, H. A vegetation-climate classification system for global change studies in China. Quat. Sci. 1993, 2, 157–173. [Google Scholar]
- Zhou, G.; Wang, Y. Global change and climate-vegetation classification. Chin. Sci. Bull. 2000, 45, 577–585. [Google Scholar] [CrossRef]
- Lin, H.L.; Feng, Q.S.; Zhang, Y.J. Spatial-Temporal Dynamics of Potential Grassland Vegetation in China under the Global Climate Change Scenarios. In Proceedings of the Workshop of Sustainable Grassland Management in China & Australia, Bruce, Australia, 23 December 2021. [Google Scholar]
- Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation. IEEE Trans. Geosci. Remote Sens. 2012, 51, 704–718. [Google Scholar] [CrossRef]
- Xia, T.; Wang, Z.J.; Zheng, H. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China. Atmos. 2015, 6, 983–1005. [Google Scholar] [CrossRef]
- Wang, W.; Sun, L.; Cai, Y.; Yi, Y.; Yang, W.; Yang, Z. Evaluation of multi-source precipitation data in a watershed with complex topography based on distributed hydrological modeling. River Res. Appl. 2021, 37, 1115–1133. [Google Scholar] [CrossRef]
- Chen, T.; Liu, X.Y.; Liu, X.; Li, X.; Liu, J. Spatial downscaling of monthly precipitation based on TRMM satellite in Ya’an. IOP Conf. Ser. Mater. Sci. Eng. 2020, 794, 012007. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Richard, Y.; Poccard, I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. Int. J. Remote Sens. 1998, 19, 2907–2920. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wang, C.Y.; Niu, Z.; Bu, A.; Li, B. Analysis of the Vegetation Cover Change and the Relationship bgtween NDVI and Environmental Factors by Using NOAA Time Series Data. J. Remote Sens. 1998, 2, 210–216. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Xu, S.; Wu, C.; Wang, L.; Gonsamo, A.; Shen, Y.; Niu, Z. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sens. Environ. 2015, 162, 119–140. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B. Downscaling the GPM-based satellite precipitation retrievals using gradient boosting decision tree approach over Mainland China. J. Hydrol. 2021, 602, 126803. [Google Scholar] [CrossRef]
Region | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MAE (mm) | RMSE (mm) | R2 | MAE (mm) | RMSE (mm) | R2 | MAE (mm) | RMSE (mm) | R2 | MAE (mm) | RMSE (mm) | |
1 | 0.930 | 0.285 | 0.441 | 0.940 | 5.595 | 8.025 | 0.821 | 18.857 | 33.659 | 0.960 | 1.469 | 2.046 |
2 | 0.975 | 1.042 | 2.003 | 0.977 | 5.542 | 8.996 | 0.929 | 14.199 | 25.273 | 0.968 | 1.558 | 2.416 |
3 | 0.950 | 1.236 | 2.322 | 0.952 | 3.986 | 7.048 | 0.938 | 10.470 | 18.147 | 0.985 | 1.628 | 2.895 |
4 | 0.878 | 12.106 | 26.279 | 0.963 | 13.125 | 19.758 | 0.932 | 17.134 | 26.570 | 0.942 | 5.972 | 10.355 |
5 | 0.921 | 7.071 | 13.352 | 0.956 | 16.725 | 22.213 | 0.928 | 24.207 | 29.024 | 0.954 | 7.140 | 11.239 |
6 | 0.869 | 0.793 | 1.640 | 0.975 | 3.846 | 5.745 | 0.941 | 9.845 | 15.632 | 0.946 | 1.506 | 2.852 |
7 | 0.932 | 0.696 | 1.344 | 0.871 | 5.291 | 7.716 | 0.929 | 3.907 | 5.619 | 0.913 | 1.313 | 2.530 |
8 | 0.902 | 1.777 | 3.999 | 0.915 | 9.921 | 15.552 | 0.825 | 14.110 | 19.792 | 0.857 | 4.196 | 7.244 |
Mean | 0.92 | 3.126 | 6.423 | 0.944 | 8.004 | 11.88 | 0.905 | 14.091 | 21.715 | 0.941 | 3.098 | 5.197 |
Unallocated Area Prediction | Kriging Interpolation | Results after Residual Correction | |
---|---|---|---|
R2 | 0.738 | 0.891 | 0.949 |
MAE (mm) | 23.245 | 11.480 | 8.887 |
RMSE (mm) | 45.916 | 29.017 | 20.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Wang, X.; Jiao, D.; Zhang, Y.; Liu, J. Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees. Atmosphere 2023, 14, 1489. https://doi.org/10.3390/atmos14101489
Zhu S, Wang X, Jiao D, Zhang Y, Liu J. Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees. Atmosphere. 2023; 14(10):1489. https://doi.org/10.3390/atmos14101489
Chicago/Turabian StyleZhu, Shaonan, Xiangyuan Wang, Donglai Jiao, Yiding Zhang, and Jiaxin Liu. 2023. "Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees" Atmosphere 14, no. 10: 1489. https://doi.org/10.3390/atmos14101489
APA StyleZhu, S., Wang, X., Jiao, D., Zhang, Y., & Liu, J. (2023). Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees. Atmosphere, 14(10), 1489. https://doi.org/10.3390/atmos14101489