Characteristics of Atmospheric Ice Nucleation during Spring: A Case Study on Huangshan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Site
2.2. Ice-Nucleating Particle Measurements
2.3. Determination of Aerosol Number Concentrations
2.4. Electron Microscopy
3. Results and Discussion
3.1. Observation of Ice Nucleation
3.2. The Correlation between INP Concentration and Aerosol Size Distribution
3.3. Chemical Composition Characteristics of INPs: A Case
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zauscher, M.D.; Moore, M.J.K.; Lewis, G.S.; Hering, S.V.; Prather, K.A. Approach for Measuring the Chemistry of Individual Particles in the Size Range Critical for Cloud Formation. Anal. Chem. 2011, 83, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Lenaerts, J.T.M.; Van Tricht, K.; Lhermitte, S.; L’Ecuyer, T.S. Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett. 2017, 44, 3355–3364. [Google Scholar] [CrossRef]
- Sanghavi, S.; Lebsock, M.; Stephens, G. Sensitivity analysis of polarimetric O2 A-band spectra for potential cloud retrievals using OCO-2/GOSAT measurements. Atmos. Meas. Tech. 2015, 8, 3601–3616. [Google Scholar] [CrossRef]
- Schrod, J.; Thomson, E.S.; Weber, D.; Kossmann, J.; Pöhlker, C.; Saturno, J.; Ditas, F.; Artaxo, P.; Clouard, V.; Saurel, J.-M. Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe. Atmos. Chem. Phys. 2020, 20, 15983–16006. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Burrows, S.M.; Shi, Y. Effects of marine organic aerosols as sources of immersion-mode ice-nucleating particles on high-latitude mixed-phase clouds. Atmos. Chem. Phys. 2021, 21, 2305–2327. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.L. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Matsui, H. Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016. Atmos. Chem. Phys. 2021, 21, 5965–5982. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.; Eidhammer, T.; Rogers, D. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Choobari, O.; Gharaylou, M. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmos. Res. 2017, 185, 53–64. [Google Scholar] [CrossRef]
- Gettelman, A.; Liu, X.; Barahona, D.; Lohmann, U.; Chen, C. Climate impacts of ice nucleation. J. Geophys. Res. Atmos. 2012, 117, D20. [Google Scholar] [CrossRef]
- DeMott, P.J.; Mason, R.H.; McCluskey, C.S.; Hill, T.C.; Perkins, R.J.; Desyaterik, Y.; Bertram, A.K.; Trueblood, J.V.; Grassian, V.H.; Qiu, Y. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols. Environ. Sci. Process. Impacts 2018, 20, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Marcolli, C.; Nagare, B.; Welti, A.; Lohmann, U. Ice nucleation efficiency of AgI: Review and new insights. Atmos. Chem. Phys. 2016, 16, 8915–8937. [Google Scholar] [CrossRef]
- Liu, X. Heterogeneous nucleation or homogeneous nucleation? J. Chem. Phys. 2000, 112, 9949–9955. [Google Scholar] [CrossRef]
- Madras, G.; McCoy, B.J. Temperature effects on the transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci. 2004, 59, 2753–2765. [Google Scholar] [CrossRef]
- Simpson, E.L.; Connolly, P.J.; McFiggans, G. Competition for water vapour results in suppression of ice formation in mixed-phase clouds. Atmos. Chem. Phys. 2018, 18, 7237–7250. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Diao, M.; D’Alessandro, J.J.; Wang, Y.; Wu, C.; Zhang, D.; Wang, Z.; Xie, S. Impacts of representing heterogeneous distribution of cloud liquid and ice on phase partitioning of Arctic mixed-phase clouds with NCAR CAM5. J. Geophys. Res. Atmos. 2019, 124, 13071–13090. [Google Scholar] [CrossRef]
- Tao, W.K.; Chen, J.P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, 2. [Google Scholar] [CrossRef]
- Burrows, S.M.; McCluskey, C.S.; Cornwell, G.; Steinke, I.; Zhang, K.; Zhao, B.; Zawadowicz, M.; Raman, A.; Kulkarni, G.; China, S. Ice-nucleating particles that impact clouds and climate: Observational and modeling research needs. Rev. Geophys. 2022, 60, e2021RG000745. [Google Scholar] [CrossRef]
- Rangel-Alvarado, R.; Li, H.; Ariya, P.A. Snow particles physiochemistry: Feedback on air quality, climate change, and human health. Environ. Sci. Atmos. 2022, 2, 891–920. [Google Scholar] [CrossRef]
- Riemer, N.; Ault, A.; West, M.; Craig, R.; Curtis, J. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 2019, 57, 187–249. [Google Scholar] [CrossRef]
- Lacher, L.; Steinbacher, M.; Bukowiecki, N.; Herrmann, E.; Zipori, A.; Kanji, Z.A. Impact of air mass conditions and aerosol properties on ice nucleating particle concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere 2018, 9, 363. [Google Scholar] [CrossRef]
- Huang, S.; Hu, W.; Chen, J.; Wu, Z.; Zhang, D.; Fu, P. Overview of biological ice nucleating particles in the atmosphere. Environ. Int. 2021, 146, 106197. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, M.; Nakajima, T.; Suzuki, K.; Kawamoto, K.; Higurashi, A.; Rosenfeld, D.; Sano, I.; Mukai, S. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. Atmos. 2003, 108, D22. [Google Scholar] [CrossRef]
- McComiskey, A.; Feingold, G. The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys. 2012, 12, 1031–1049. [Google Scholar] [CrossRef]
- Gryspeerdt, E.; Quaas, J.; Bellouin, N. Constraining the aerosol influence on cloud fraction. J. Geophys. Res. Atmos. 2016, 121, 3566–3583. [Google Scholar] [CrossRef]
- Cornwell, G.C.; McCluskey, C.S.; Hill, T.C.; Levin, E.T.; Rothfuss, N.E.; Tai, S.-L.; Petters, M.D.; DeMott, P.J.; Kreidenweis, S.; Prather, K.A. Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability. Sci. Adv. 2023, 9, eadg3715. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; O’sullivan, D.; Atkinson, J.; Webb, M. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [PubMed]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Morris, C.E.; Georgakopoulos, D.G.; Sands, D.C. Ice nucleation active bacteria and their potential role in precipitation. J. De Phys. IV Proc. 2004, 121, 87–103. [Google Scholar] [CrossRef]
- Connolly, P.; Möhler, O.; Field, P.; Saathoff, H.; Burgess, R.; Choularton, T.; Gallagher, M. Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 2009, 9, 2805–2824. [Google Scholar] [CrossRef]
- Niemand, M. A Particle-Surface-Area-Based Formulation of Heterogeneous Ice Nucleation by Mineral Dust Aerosols. Ph.D. Thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2012. [Google Scholar]
- Koehler, K.A.; DeMott, P.J.; Kreidenweis, S.M.; Popovicheva, O.B.; Petters, M.D.; Carrico, C.M.; Kireeva, E.D.; Khokhlova, T.D.; Shonija, N.K. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys. 2009, 11, 7906–7920. [Google Scholar] [CrossRef]
- DeMott, P.J. An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteorol. Climatol. 1990, 29, 1072–1079. [Google Scholar] [CrossRef]
- Santachiara, G.; Prodi, F.; Belosi, F.; Nicosia, A. A Review of Thermo-and Diffusio-Phoresis in the Atmospheric Aerosol Scavenging Process. Part 2: Ice Crystal and Snow Scavenging. Atmos. Clim. Sci. 2023, 13, 466–477. [Google Scholar] [CrossRef]
- Eriksen Hammer, S.; Mertes, S.; Schneider, J.; Ebert, M.; Kandler, K.; Weinbruch, S. Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): Enrichment and depletion of particle groups relative to total aerosol. Atmos. Chem. Phys. 2018, 18, 13987–14003. [Google Scholar] [CrossRef]
- Calvo, A.; Alves, C.; Castro, A.; Pont, V.; Vicente, A.; Fraile, R. Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res. 2013, 120, 1–28. [Google Scholar] [CrossRef]
- Usher, C.R.; Michel, A.E.; Grassian, V.H. Reactions on mineral dust. Chem. Rev. 2003, 103, 4883–4940. [Google Scholar] [CrossRef] [PubMed]
- Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F. Laboratory-generated mixtures of mineral dust particles with biological substances: Characterization of the particle mixing state and immersion freezing behavior. Atmos. Chem. Phys. 2016, 16, 5531–5543. [Google Scholar] [CrossRef]
- Kulkarni, G.; Sanders, C.; Zhang, K.; Liu, X.; Zhao, C. Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties. J. Geophys. Res. Atmos. 2014, 119, 9993–10011. [Google Scholar] [CrossRef]
- Sullivan, R.; Petters, M.D.; DeMott, P.J.; Kreidenweis, S.M.; Wex, H.; Niedermeier, D.; Hartmann, S.; Clauss, T.; Stratmann, F.; Reitz, P. Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys. 2010, 10, 11471–11487. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, J.; Zhao, C.; Fang, W.; Xue, W.; Yang, W.; Ji, D.; Dang, J.; Duan, J.; Sun, J. A study on the characteristics of ice nucleating particles concentration and aerosols and their relationship in spring in Beijing. Atmos. Res. 2021, 247, 105196. [Google Scholar] [CrossRef]
- Chen, K.; Yin, Y.; Liu, S.; Liu, C.; Wang, H.; He, C.; Jiang, H.; Chen, J. Concentration and variability of deposition-mode ice nucleating particles from Mt. Tai China in the Early Summer. Atmos. Res. 2021, 253, 105426. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Chen, K.; Chen, Q.; He, C.; Sun, L. The measurement of ice nucleating particles at Tai’an city in East China. Atmos. Res. 2020, 232, 104684. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Wang, X.; Gao, R.; Yuan, L.; Chen, K.; Shan, Y. The measurement and parameterization of ice nucleating particles in different backgrounds of China. Atmos. Res. 2016, 181, 72–80. [Google Scholar] [CrossRef]
- Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T. A new temperature-and humidity-dependent surface site density approach for deposition ice nucleation. Atmos. Chem. Phys. 2015, 15, 3703–3717. [Google Scholar] [CrossRef]
- Shen, L.-J.; Wang, H.-L.; Yin, Y.; Chen, K.; Chen, J.-H.; Shi, S.-S. Size Distributions of Aerosol During the Summer at the Summit of Mountain Taishan (1534 m) in Central East China. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 2019–2026. [Google Scholar] [PubMed]
- Wu, J.; Yin, Y.; Chen, K.; He, C.; Jiang, H.; Zheng, B.; Li, B.; Li, Y.; Lv, Y. Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations. Atmosphere 2022, 13, 1447. [Google Scholar] [CrossRef]
- Huffman, P.J. Supersaturation Spectra of AgI and Natural Ice Nuclei. J. Appl. Meteorol. (1962–1982) 1973, 12, 1080–1082. [Google Scholar] [CrossRef]
- Meyers, M.; DeMott, P.; Cotton, W. New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model. J. Appl. Meteorol. Climatol. 1982, 31, 708–721. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- DeMott, P.J.; Möhler, O.; Stetzer, O.; Vali, G.; Levin, Z.; Petters, M.D.; Murakami, M.; Leisner, T.; Bundke, U.; Klein, H. Resurgence in ice nuclei measurement research. Bull. Am. Meteorol. Soc. 2011, 92, 1623–1635. [Google Scholar] [CrossRef]
- Mason, R.; Si, M.; Chou, C.; Irish, V.; Dickie, R.; Elizondo, P.; Wong, R.; Brintnell, M.; Elsasser, M.; Lassar, W. Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmos. Chem. Phys. 2016, 16, 1637–1651. [Google Scholar] [CrossRef]
- Rauch, J.N.; Pacyna, J.M. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Glob. Biogeochem. Cycle 2009, 23, 16. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C. Natural and human factors affect the distribution of soil heavy metal pollution: A review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Nortjé, G.P.; Laker, M.C. Factors that determine the sorption of mineral elements in soils and their impact on soil and water pollution. Minerals 2021, 11, 821. [Google Scholar] [CrossRef]
- Blocken, B.; Van Druenen, T.; Ricci, A.; Kang, L.; Van Hooff, T.; Qin, P.; Xia, L.; Ruiz, C.A.; Arts, J.; Diepens, J. Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Build. Environ. 2021, 193, 107659. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Liu, S.; Li, H.; Chen, X.; Peng, C.; Zhang, P.; Liu, X. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands. Environ. Pollut. 2021, 269, 116199. [Google Scholar] [CrossRef]
- Shao, L.; Liu, P.; Jones, T.; Yang, S.; Wang, W.; Zhang, D.; Li, Y.; Yang, C.-X.; Xing, J.; Hou, C. A review of atmospheric individual particle analyses: Methodologies and applications in environmental research. Gondwana Res. 2022, 110, 347–369. [Google Scholar] [CrossRef]
- Murphy, D.M.; Froyd, K.D.; Bourgeois, I.; Brock, C.A.; Kupc, A.; Peischl, J.; Schill, G.P.; Thompson, C.R.; Williamson, C.J.; Yu, P. Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere. Atmos. Chem. Phys. 2021, 21, 8915–8932. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Chen, X.; Zhu, S.; Ji, L.; Yin, Y. Characteristics of Atmospheric Ice Nucleation during Spring: A Case Study on Huangshan. Atmosphere 2024, 15, 629. https://doi.org/10.3390/atmos15060629
Chen K, Chen X, Zhu S, Ji L, Yin Y. Characteristics of Atmospheric Ice Nucleation during Spring: A Case Study on Huangshan. Atmosphere. 2024; 15(6):629. https://doi.org/10.3390/atmos15060629
Chicago/Turabian StyleChen, Kui, Xinhan Chen, Shichao Zhu, Lei Ji, and Yan Yin. 2024. "Characteristics of Atmospheric Ice Nucleation during Spring: A Case Study on Huangshan" Atmosphere 15, no. 6: 629. https://doi.org/10.3390/atmos15060629
APA StyleChen, K., Chen, X., Zhu, S., Ji, L., & Yin, Y. (2024). Characteristics of Atmospheric Ice Nucleation during Spring: A Case Study on Huangshan. Atmosphere, 15(6), 629. https://doi.org/10.3390/atmos15060629