Impact of Anthropogenic Heat on Urban Environment: A Case Study of Singapore with High-Resolution Gridded Data
Abstract
:1. Introduction
2. Study Area, Data and Methods
2.1. Study Area
2.2. Data
2.2.1. AH Data
2.2.2. Meteorological Observation Data
2.3. WRF Model Setting
3. WRF Model Validation
3.1. 2-m Temperature
3.2. 2-m Relative Humidity
3.3. 10-m Wind Speed
3.4. Quantitative Error Analysis
4. Results and Discussion
4.1. The Effect of AH on Temperature
4.2. The Effect of AH on Sensible Heat Flux
4.3. The Effect of AH on the Planetary Boundary Layer Height
4.4. Local Circulation and Urban Heat Island Circulation
4.4.1. Local Circulation
4.4.2. Urban Heat Island Circulation
5. Conclusions
- (1)
- The results of 2-m temperature and 2-m relative humidity are consistent with the observation data from weather stations, but there is a larger bias of 10-m wind speed.
- (2)
- QF causes the largest temperature increase of over 0.3 °C in 23.9% of the grids, where some grids exhibit the largest temperature increase of 1.7 °C; QB causes the largest temperature increase of over 0.3 °C in 3.96% of the grids, where some grids exhibit the largest temperature increase of 1.5 °C; and QV causes the largest temperature increase of over 0.3 °C in 1.54% of the grids, where some grids exhibit the largest temperature increase of 0.5 °C.
- (3)
- The effects of AH on sensible heat fluxes and the planetary boundary layer height are generally consistent. Both QF and QB increase the sensible heat flux by about 20 Wm−2 and the planetary boundary layer height by 20–40 m in urban areas at night, while the effects of QV are small. In the daytime, QF increases the sensible heat flux in urban areas by more than 30 Wm−2, with QB and QV both contributing 20–30 Wm−2, and the effects on the planetary boundary layer height by different AH components are quite similar.
- (4)
- The effect of AH on the local circulations in Singapore is very small, while the effect on the UHI circulations is more pronounced. AH significantly enhances the vertical updrafts in urban areas. With little change in horizontal wind speed, the effects of QB or QV on the urban environment can be greater than that of QF in some grids.
Author Contributions
Funding
Conflicts of Interest
References
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D.; Wong, M.S.; Ren, H.; Cao, S.; Yu, C.; Ho, H.C. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing-Tianjin-Hebei region in China. Environ. Pollut. 2019, 249, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Wang, S.X. Assessing the spatiotemporal variation in anthropogenic heat and its impact on the surface thermal environment over global land areas. Sustain. Cities Soc. 2020, 63, 102488. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.Y.; Yue, W.Z.; Li, X.C.; Liu, Y.; Lu, D.B. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J. Clean Prod. 2020, 257, 120529. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Liu, X.; Yue, W.; Yang, X.; Hu, K.; Zhang, W.; Huang, M. Mapping urban heat vulnerability of extreme heat in Hangzhou via comparing two approaches. Complexity 2020, 2020, 9717658. [Google Scholar] [CrossRef]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping community determinants of heat vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- He, B.-J. Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustain. Cities Soc. 2019, 50, 101647. [Google Scholar] [CrossRef]
- Litardo, J.; Palme, M.; Borbor-Cordova, M.; Caiza, R.; Macias, J.; Hidalgo-Leon, R.; Soriano, G. Urban Heat Island intensity and buildings’ energy needs in Duran, Ecuador: Simulation studies and proposal of mitigation strategies. Sustain. Cities Soc. 2020, 62, 102387. [Google Scholar] [CrossRef]
- Bernard, J.; Musy, M.; Calmet, I.; Bocher, E.; Keravec, P. Urban heat island temporal and spatial variations: Empirical modeling from geographical and meteorological data. Build. Environ. 2017, 125, 423–438. [Google Scholar] [CrossRef]
- Yuan, C.; Zhu, R.X.; Tong, S.S.; Mei, S.J.; Zhu, W. Impact of anthropogenic heat from air-conditioning on air temperature of naturally ventilated apartments at high-density tropical cities. Energy Build. 2022, 268, 112171. [Google Scholar] [CrossRef]
- Carrese, S.; Cuneo, V.; Nigro, M.; Pizzuti, R.; Ardito, C.F.; Marseglia, G. Optimization of downstream fuel logistics based on road infrastructure conditions and exposure to accident events. Transp. Policy 2022, 124, 96–105. [Google Scholar] [CrossRef]
- Ichinose, T.; Shimodozono, K.; Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 1999, 33, 3897–3909. [Google Scholar] [CrossRef]
- Fan, H.L.; Sailor, D.J. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ. 2005, 39, 73–84. [Google Scholar] [CrossRef]
- Feng, J.-M.; Wang, Y.-L.; Ma, Z.-G.; Liu, Y.-H. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J. Clim. 2012, 25, 7187–7203. [Google Scholar] [CrossRef]
- Mohan, M.; Singh, V.K.; Bhati, S.; Lodhi, N.; Sati, A.P.; Sahoo, N.R.; Dash, S.; Mishra, P.C.; Dey, S. Industrial heat island: A case study of Angul-Talcher region in India. Theor. Appl. Climatol. 2020, 141, 229–246. [Google Scholar] [CrossRef]
- Wen, Y.; Lian, Z. Influence of air conditioners utilization on urban thermal environment. Appl. Therm. Eng. 2009, 29, 670–675. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Yagüe, C. A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int. J. Climatol. 2012, 32, 2372–2386. [Google Scholar] [CrossRef]
- de Munck, C.; Pigeon, G.; Masson, V.; Meunier, F.; Bousquet, P.; Tréméac, B.; Merchat, M.; Poeuf, P.; Marchadier, C. How much can air conditioning increase air temperatures for a city like Paris, France? Int. J. Climatol. 2013, 33, 210–227. [Google Scholar] [CrossRef]
- Mughal, M.O.; Li, X.X.; Yin, T.G.; Martilli, A.; Brousse, O.; Dissegna, M.A.; Norford, L.K. High-Resolution, Multilayer Modeling of Singapore’s Urban Climate Incorporating Local Climate Zones. J. Geophys. Res.-Atmos. 2019, 124, 7764–7785. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Ruan, S. Polycentric structure and carbon dioxide emissions: Empirical analysis from provincial data in China. J. Clean Prod. 2021, 278, 123411. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.B.; Ying, S.; Yu, Z.H.; Li, Z.; Lan, H.H. Impact of land cover and population density on land surface temperature: Case study in Wuhan, China. J. Appl. Remote Sens. 2014, 8, 084993. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s Urban Heat Island-Exploring the Relationship between Land Use and Surface Temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, L.Q.; Sun, T.; Albertson, J.; Li, Q. Impact of heat storage on remote-sensing based quantification of anthropogenic heat in urban environments. Remote Sens. Environ. 2021, 262, 112520. [Google Scholar] [CrossRef]
- Li, X.X.; Koh, T.Y.; Entekhabi, D.; Roth, M.; Panda, J.; Norford, L.K. A multi-resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere. J. Geophys. Res.-Atmos. 2013, 118, 9804–9818. [Google Scholar] [CrossRef]
- Li, X.-X.; Norford, L.K. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 2016, 16, 59–74. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.X.; Harshan, S.; Roth, M.; Velasco, E. Evaluation of an urban canopy model in a tropical city: The role of tree evapotranspiration. Environ. Res. Lett. 2017, 12, 094008. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, X. Effect of tree evapotranspiration and hydrological processes on urban microclimate in a tropical city: A WRF/SLUCM study. Urban Clim. 2021, 40, 101009. [Google Scholar] [CrossRef]
- Chew, L.W.; Liu, X.; Li, X.X.; Norford, L.K. Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmos. Res. 2021, 247, 105134. [Google Scholar] [CrossRef]
- Lin, C.Y.; Su, C.J.; Kusaka, H.; Akimoto, Y.; Sheng, Y.F.; Huang, J.C.; Hsu, H.H. Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmos. Chem. Phys. 2016, 16, 1809–1822. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.C.; Wu, J.J. Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data. J. Geophys. Res.-Atmos. 2016, 121, 5193–5212. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, W.M.; Zhang, N.; He, X.F.; Zhou, R.W. Numerical simulation of the anthropogenic heat effect on urban boundary layer structure. Theor. Appl. Climatol. 2009, 97, 123–134. [Google Scholar] [CrossRef]
- Zhan, C.C.; Xie, M. Land use and anthropogenic heat modulate ozone by meteorology: A perspective from the Yangtze River Delta region. Atmos. Chem. Phys. 2022, 22, 1351–1371. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, L.; Ma, Y.M.; Fu, Y.F.; Chen, M.X.; Ma, W.Q.; Zhao, C.; Huang, Z.Y.; Zhou, K.Q. WRF/UCM simulations of the impacts of urban expansion and future climate change on atmospheric thermal environment in a Chinese megacity. Clim. Change 2021, 169, 38. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Salamanca, F.; Georgescu, M.; Mahalov, A.; Milne, J.M.; Ruddell, B.L. A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes. Atmos. Environ. 2014, 99, 64–76. [Google Scholar] [CrossRef]
- Mughal, M.O.; Li, X.X.; Norford, L.K. Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones. Urban Clim. 2020, 34, 100714. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.C.; Zhu, R.; Wong, M.S.; Ren, C. Spatiotemporal impact of vehicle heat on urban thermal environment: A case study in Hong Kong. Build. Environ. 2021, 205, 108224. [Google Scholar] [CrossRef]
- Zhou, X.L.; Yamamoto, M.; Yan, S.T.; Ishida, Y.; Cai, M.; Ji, Q.F.; Makvandi, M.; Li, C.C. Exploring the impacts of heat release of vehicles on urban heat mitigation in Sendai, Japan using WRF model integrated with urban LCZ. Sustain. Cities Soc. 2022, 82, 103922. [Google Scholar] [CrossRef]
- Brown, D.M. Possible Thunderstorm Modifications Caused by the Athabasca Oil Sands Development and the Canadian Shield. Ph.D Thesis, University of Alberta, Edmonton, Canada, 2017. [Google Scholar]
- Singh, V.K.; Mughal, M.O.; Martilli, A.; Acero, J.A.; Ivanchev, J.; Norford, L.K. Numerical analysis of the impact of anthropogenic emissions on the urban environment of Singapore. Sci. Total Environ. 2022, 806, 150534. [Google Scholar] [CrossRef]
- Singapore Department of Statistics. Population Trends 2022. Available online: https://www.singstat.gov.sg/-/media/files/publications/population/population2022.ashx (accessed on 2 August 2023).
- Li, X.X. Linking residential electricity consumption and outdoor climate in a tropical city. Energy 2018, 157, 734–743. [Google Scholar] [CrossRef]
- Quah, A.K.L.; Roth, M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos. Environ. 2012, 46, 92–103. [Google Scholar] [CrossRef]
- Roth, M.; Chow, W.T.L. A historical review and assessment of urban heat island research in Singapore. Singap. J. Trop. Geogr. 2012, 33, 381–397. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Fong, M. The Weather and Climate of Singapore; Meteorological Service Singapore: Singapore, 2009. [Google Scholar]
- He, W.H.; Li, X.X.; Zhang, X.H.; Yin, T.G.; Norford, L.K.; Yuan, C. Estimation of anthropogenic heat from buildings based on various data sources in Singapore. Urban Clim. 2023, 49, 101434. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
- Li, X.X.; Koh, T.Y.; Panda, J.; Norford, L.K. Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. J. Geophys. Res.-Atmos. 2016, 121, 4386–4403. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction. NCEP GDAS/FNL 0.25. Degree Global Tropospheric Analyses and Forecast Grids; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory; National Center for Atmospheric Research: Boulder, CO, USA, 2015. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Weather. Rev. 2001, 129, 587–604. [Google Scholar] [CrossRef]
- Tewari, N.M.; Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J. Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5). In Proceedings of the Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004. [Google Scholar]
- Yuan, C.; Adelia, A.S.; Mei, S.J.; He, W.H.; Li, X.X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Mussetti, G.; Davin, E.L.; Schwaab, J.; Acero, J.A.; Ivanchev, J.; Singh, V.K.; Jin, L.X.; Seneviratne, S.I. Do Electric Vehicles Mitigate Urban Heat? The Case of a Tropical City. Front. Environ. Sci. 2022, 10, 42. [Google Scholar] [CrossRef]
- Sarangi, C.; Qian, Y.; Li, J.F.; Leung, L.R.; Chakraborty, T.C.; Liu, Y. Urbanization Amplifies Nighttime Heat Stress on Warmer Days Over the US. Geophys. Res. Lett. 2021, 48, e2021GL095678. [Google Scholar] [CrossRef]
- Heaviside, C.; Cai, X.M.; Vardoulakis, S. The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Q. J. R. Meteorol. Soc. 2015, 141, 1429–1441. [Google Scholar] [CrossRef]
- Tian, W.S.; Yang, Y.J.; Wang, L.L.; Zong, L.; Zhang, Y.H.; Liu, D.Y. Role of local climate zones and urban ventilation in canopy urban heat island-heatwave interaction in Nanjing megacity, China. Urban Clim. 2023, 49, 101474. [Google Scholar] [CrossRef]
- Yuan, C.; Ng, E. Building porosity for better urban ventilation in high-density cities—A computational parametric study. Build. Environ. 2012, 50, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Chew, L.W.; Norford, L.K. Pedestrian-level wind speed enhancement with void decks in three-dimensional urban street canyons. Build. Environ. 2019, 155, 399–407. [Google Scholar] [CrossRef]
- Xie, M.; Liao, J.B.; Wang, T.J.; Zhu, K.G.; Zhuang, B.L.; Han, Y.; Li, M.M.; Li, S. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China. Atmos. Chem. Phys. 2016, 16, 6071–6089. [Google Scholar] [CrossRef]
- Liu, R.T.; Han, Z.W.; Li, J.W.; Li, J.; Liang, L.; Wu, Y.F. The impacts of urban anthropogenic heat and surface albedo change on boundary layer meteorology and air pollutants in the Beijing-Tianjin-Hebei region. Urban Clim. 2023, 47, 101358. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; p. 548. [Google Scholar]
QB | QV | QM | |
---|---|---|---|
Case 1 | × | × | × |
Case 2 | √ | √ | √ |
Case 3 | √ | × | × |
Case 4 | × | √ | × |
Station | Temperature (°C) | RH (%) | Wind Speed (m s−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
MBE | MAE | RMSE | MBE | MAE | RMSE | MBE | MAE | RMSE | |
S24 (U) | −0.74 | 1.38 | 1.73 | −2.45 | 6.12 | 8.57 | 0.08 | 1.08 | 1.40 |
S43 (U) | −0.83 | 1.52 | 1.83 | −0.94 | 6.10 | 8.53 | 0.84 | 1.19 | 1.50 |
S44 (U) | 0.17 | 1.37 | 1.89 | - | - | - | 0.80 | 1.16 | 1.46 |
S50 (U) | 0.08 | 1.32 | 1.82 | −5.93 | 7.65 | 10.89 | 1.17 | 1.37 | 1.74 |
S104 (U) | −0.28 | 1.43 | 1.88 | −9.87 | 10.84 | 14.03 | 0.09 | 1.11 | 1.45 |
S106 (R) | −0.38 | 1.25 | 1.62 | −6.74 | 7.94 | 10.35 | 0.53 | 1.35 | 1.87 |
S108 (R) | −1.96 | 2.16 | 2.43 | 5.25 | 7.57 | 9.37 | 2.22 | 2.34 | 2.99 |
S109 (U) | −0.09 | 1.43 | 1.91 | −1.79 | 7.38 | 10.55 | 1.07 | 1.24 | 1.64 |
S111 (U) | −0.20 | 1.40 | 1.78 | −1.07 | 7.30 | 9.44 | 1.30 | 1.63 | 2.06 |
S115 (U) | −1.11 | 1.63 | 1.93 | 1.44 | 7.34 | 8.99 | 1.71 | 1.96 | 2.35 |
S116 (U) | −1.03 | 1.49 | 1.80 | −5.43 | 7.50 | 9.78 | 0.41 | 1.16 | 1.54 |
S121 (R) | −0.32 | 1.50 | 1.94 | - | - | - | 1.56 | 1.68 | 2.04 |
S122 (R) | −0.50 | 1.74 | 2.15 | - | - | - | 1.41 | 1.53 | 1.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Li, X.-X.; Xin, R.; Chew, L.W. Impact of Anthropogenic Heat on Urban Environment: A Case Study of Singapore with High-Resolution Gridded Data. Atmosphere 2023, 14, 1499. https://doi.org/10.3390/atmos14101499
Wang A, Li X-X, Xin R, Chew LW. Impact of Anthropogenic Heat on Urban Environment: A Case Study of Singapore with High-Resolution Gridded Data. Atmosphere. 2023; 14(10):1499. https://doi.org/10.3390/atmos14101499
Chicago/Turabian StyleWang, Ao, Xian-Xiang Li, Rui Xin, and Lup Wai Chew. 2023. "Impact of Anthropogenic Heat on Urban Environment: A Case Study of Singapore with High-Resolution Gridded Data" Atmosphere 14, no. 10: 1499. https://doi.org/10.3390/atmos14101499
APA StyleWang, A., Li, X. -X., Xin, R., & Chew, L. W. (2023). Impact of Anthropogenic Heat on Urban Environment: A Case Study of Singapore with High-Resolution Gridded Data. Atmosphere, 14(10), 1499. https://doi.org/10.3390/atmos14101499