Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. Data
2.3. Methods
2.3.1. Calculation of HWDI, CWD, and CDD Indices
- CDD (consecutive dry days) is the greatest length of consecutive days when the precipitation amount is less than 1 mm/day. This is an indicator of dry spells (day) and drought. A further variable is the number of consecutive dry day periods of more than 5 days in a given time period.
- CWD (consecutive wet days) is the greatest length of consecutive days when the precipitation amount is greater than 1 mm/day. A further variable is the number of consecutive wet periods of more than 5 days in a given time period.
- HWDI (heatwave duration index) is the maximum period of at least three (or six) consecutive days where the daily maximum temperature exceeds the daily mean maximum temperature during the period of 1976–2005 + 5 °C [68]. A further derived variable is the number of heatwaves longer than or equal to three (or six) days. The daily mean maximum temperature during the period of 1976–2005 is calculated using a five-day window centered on each calendar day, considered as the climate reference period.
2.3.2. An Evaluation of the Simulations’ Ability to Represent the Indices
2.3.3. Climate Change Signal
3. Results and Discussion
3.1. Historical Seasonal Cycle of CDD, CWD, and HWDI Indices over the Different Subregions of West Africa
3.1.1. CDD Index and Its Number
3.1.2. CWD Index and CWD Number
3.1.3. HWDI and Number of HWDI
3.2. Validation of the CORDEX Simulations of CDD, CWD, and HWDI over West African Subregions
3.2.1. CDD
3.2.2. CWD
3.2.3. HWDI
3.3. Projected Changes in the Annual Cycles of CDD, CWD, and HWDI Indices over West Africa
3.3.1. Seasonal Changes in the HWDI
3.3.2. Seasonal Changes in CWD
3.3.3. Seasonal Changes in CDD
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boko, M.; Niang, I.; Nyong, A.; Vogel, C.; Githeko, A.; Medany, M.; Osman-Elasha, B.; Tabo, R.; Yanda, P. Africa. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 433–467. Available online: https://cgspace.cgiar.org/handle/10568/17019 (accessed on 31 March 2018).
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, D.J., Dokken, M.D., Mastrandrea, M.D., Mach, K.J., Billier, T.E., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. Available online: https://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap22_FINAL.pdf (accessed on 31 March 2018).
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Henseler, M.; Schumacher, I. The impact of weather on economic growth and its production factors. Clim. Chang. 2019, 154, 417–433. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Nastos, P.T.; Didaskalou, E. Human Thermal Conditions and North Europeans’ Web Searching Behavior (Google Trends) on Mediterranean Touristic Destinations. Urban Sci. 2017, 1, 8. [Google Scholar] [CrossRef]
- Schmitt, L.H.M.; Graham, H.M.; White, P.C.L. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review. Int. J. Environ. Res. Public Health 2016, 13, 1105. [Google Scholar] [CrossRef]
- Felbermayr, G.; Gröschl, J.; Sanders, M.; Schippers, V.; Steinwachs, T. The economic impact of weather anomalies. World Dev. 2022, 151, 20. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Droulia, F. The Agro-Meteorological Caused Famines as an Evolutionary Factor in the Formation of Civilisation and History: Representative Cases in Europe. Climate 2021, 14, 5. [Google Scholar] [CrossRef]
- Langue, C.; Gacial, N.; Lavaysse, C.; Vrac, M.; Flamant, C. Heat wave monitoring over West African cities: Uncertainties, characterization and recent trends. Nat. Hazards Earth Syst. Sci. 2023, 23, 1313–1333. [Google Scholar] [CrossRef]
- Wang, P.; Tang, J.; Sun, X.; Liu, J.; Juan, F. Spatiotemporal characteristics of heat waves over China in regional climate simulations within the CORDEX-EA project. Clim. Dyn. 2019, 52, 799–818. [Google Scholar] [CrossRef]
- Tanarhte, M.; Hadjinicolaou, P.; Lelieveld, J. Heat wave characteristics in the eastern Mediterranean and Middle East using extreme value theory. Clim. Res. 2015, 63, 99–113. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; Wang, Y.; Sheng, L. Arctic Sea ice modulation of summertime heatwaves over western North America in recent decades. Environ. Res. Lett. 2022, 17, 9. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. Available online: www.sciencemag.org (accessed on 31 March 2018).
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 10. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 15. [Google Scholar] [CrossRef]
- Bessemoulin, P.; Bourdette, N.; Courtier, P.; Manach, J. La canicule d’Août 2003 en France et en Europe. Métérologie 2004, 46, 25–33. [Google Scholar] [CrossRef]
- Poumadère, M.; Mays, C.; Le Mer, S.; Blong, R. The 2003 Heat Wave in France: Dangerous Climate Change Here and Now. Risk Anal. 2005, 25, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Matsueda, M. Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11, 375–380. [Google Scholar] [CrossRef]
- Rome, S.; Caniaux, G.; Ringard, J.; Dieppois, B.; Diedhiou, A. Identification de tendances récentes et ruptures d’ homogénéité des températures: Exemple en Afrique de l’Ouest et sur le Golfe de Guinée. In Proceedings of the XXVIII Colloquium of the International Association of Climatology, Liège, Belgium, 1–4 July 2015; pp. 591–596. [Google Scholar]
- Ringard, J.; Dieppois, B.; Rome, S.; Diedhiou, A.; Pellarin, T.; Konaré, A.; Dje, B.K.; Katiellou, G.L.; Sanda, I.S. The intensification of thermal extremes in west Africa. Glob. Planet Chang. 2016, 139, 66–77. [Google Scholar] [CrossRef]
- Sylla, M.B.; Faye, A.; Giorgi, F.; Diedhiou, A.; Kunstmann, H. Projected Heat Stress Under 1.5 °C and 2 °C Global Warming Scenarios Creates Unprecedented Discomfort for Humans in West Africa. Earth’s Future 2018, 6, 16. [Google Scholar] [CrossRef]
- Jahn, M. Economics of extreme weather events: Terminology and regional impact models. Weather Clim. Extrem. 2015, 10, 29–39. [Google Scholar] [CrossRef]
- Stefanon, M.; D’Andrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 9. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012; Available online: http://ebooks.cambridge.org/ref/id/CBO9781139177245 (accessed on 31 March 2018).
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Yapo, A.L.M. Impacts du Changement Climatique sur la Fréquence et l’Intensité des Evènements Extrêmes en Côte d’Ivoire. Ph.D. Thesis, University Félix Houphouet-Boigny, Abidjan, Côte d’Ivoire, 2021; p. 208. [Google Scholar]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. Clim. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Steadman, R.G. The assessment of sultriness. Part II: Effects of wind, extra radiation and barometric pressure on apparent tem- perature. J. Appl. Meteorol. 1979, 18, 874–885. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, J.; Lin, W.; Wang, Y. Unprecedented Heatwave in Western North America during Late June of 2021: Roles of Atmospheric Circulation and Global Warming. Adv. Atmos. Sci. 2023, 40, 14–28. [Google Scholar] [CrossRef]
- Wehner, M.; Castillo, F.; Stone, D. The impact of moisture and temperature on human health in heat waves. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Engdaw, M.M.; Ballinger, A.P.; Hegerl, G.C.; Steiner, A.K. Changes in temperature and heat waves over Africa using observational and reanalysis data sets. Int. J. Climatol. 2021, 42, 1165–1180. [Google Scholar] [CrossRef]
- Oueslati, B.; Pohl, B.; Moron, V.; Rome, S.; Janicot, S. Characterization of Heat Waves in the Sahel and Associated Physical Mechanisms. J. Clim. 2017, 30, 3095–3115. [Google Scholar] [CrossRef]
- Shafiei Shiva, J.; Chandler, D.G.; Kunkel, K.E. Localized Changes in Heat Wave Properties Across the United States. Earth’s Future 2019, 7, 300–319. [Google Scholar] [CrossRef]
- Camara, M.; Diedhiou, A.; Sow, B.A.; Diallo, M.D.; Diatta, S.; Mbaye, I.; Diallo, I. Analyse de la pluie simulée par les modèles climatiques régionaux de CORDEX en Afrique de l’Ouest. Sécheresse 2013, 24, 14–28. [Google Scholar]
- Gbobaniyi, E.; Sarr, A.; Sylla, M.B.; Diallo, I.; Lennard, C.; Dosio, A.; Dhiediou, A.; Kamga, A.; Klutse, N.A.; Hewitson, B.; et al. Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol. 2013, 34, 2241–2257. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Sylla, M.B.; Diallo, I.; Sarr, A.; Dosio, A.; Diedhiou, A.; Kamga, A.; Lamptey, B.; Ali, A.; Owusu, K. Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor. Appl. Climatol. 2015, 123, 369–386. [Google Scholar] [CrossRef]
- Sarr, A.B.; Camara, M.; Diba, I. Spatial Distribution of Cordex Regional Climate Models Biases over West Africa. Int. J. Geosci. 2015, 6, 1018–1031. [Google Scholar] [CrossRef]
- Nikiema, P.M.; Sylla, M.B.; Ogunjobi, K.; Kebe, I.; Gibba, P.; Giorgi, F. Multi-model CMIP5 and CORDEX simulations of historical summer temperature and precipitation variabilities over West Africa. Int. J. Climatol. 2016, 37, 2438–2450. [Google Scholar] [CrossRef]
- Gibba, P.; Sylla, M.B.; Okogbue, E.C.; Gaye, A.T.; Nikiema, M.; Kebe, I. State-of-the-art climate modeling of extreme precipitation over Africa: Analysis of CORDEX added-value over CMIP5. Theor. Appl. Climatol. 2018, 137, 1041–1057. [Google Scholar] [CrossRef]
- Giorgi, F.; Gutowski, W.J. Coordinated Experiments for Projections of Regional Climate Change. Curr. Clim. Chang. Rep. 2016, 2, 202–210. [Google Scholar] [CrossRef]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 972896. [Google Scholar] [CrossRef]
- Sylla, M.B.; Gaye, A.T.; Jenkins, G.S. On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over West Africa in a regional climate model projections. Int. J. Geophys. 2012, 2012, 981649. [Google Scholar] [CrossRef]
- Tall, M.; Sylla, M.B.; Diallo, I.; Pal, J.S.; Faye, A.; Mbaye, M.L.; Gaye, A.T. Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theor. Appl. Climatol. 2016, 129, 655–665. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Ajayi, V.O.; Gbobaniyi, E.O.; Egbebiyi, T.S.; Kouadio, K.; Nkrumah, F.; Quagraine, K.A.; Olusegun, C.; Diasso, U.; Abiodun, R.I.; et al. Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa. Environ. Res. Lett. 2018, 13, 7. Available online: http://iopscience.iop.org/article/10.1088/1748-9326/aab37b (accessed on 31 March 2018). [CrossRef]
- Yapo, A.L.M.; Diawara, A.; Kouassi, B.; Yoroba, F.; Sylla, M.B.; Kouadio, K.; Tieomoko, D.T.; Kone, D.I.; Akobe, E.Y.; Yao, K.P. Twenty-First Century Projected Changes in Extreme Temperature over Côte d’ Ivoire (West Africa). Int. J. Geophys. 2019, 2019, 19. [Google Scholar] [CrossRef]
- Yapo, A.L.M.; Diawara, A.; Kouassi, B.K.; Yoroba, F.; Sylla, M.B.; Kouadio, K.; Tiemoko, D.T.; Kone, D.I.; Akobe, E.Y.; Yao, K.P. Projected changes in extreme precipitation intensity and dry spell length in Côte d’Ivoire under future climates. Theor. Appl. Climatol. 2020, 19, 871–889. [Google Scholar] [CrossRef]
- Van Vuuren, D.P. Representative Concentration Pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Sylla, M.B.; Diallo, I.; Pal, J.S. West African Monsoon in State-of-the-Science Regional Climate Models. Climate Variability—Regional and Thematic Patterns. 2013. Available online: http://www.intechopen.com/books/climate-variability-regional-and-thematic-patterns/west-african-monsoon-in-state-of-the-science-regional-climate-models (accessed on 31 March 2018).
- Nicholson, S.E.; Palao, I.M. A reevaluation of rainfall variability in the Sahel. Part, I. Characteristics of rainfall fluctuations. Int. J. Climatol. 1993, 13, 371–389. [Google Scholar] [CrossRef]
- Ward, N. Diagnosis and short lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J. Clim. 1998, 12, 3167–3191. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S.; Drobinski, P. Characterization of the diurnal cycle of the West African Monsoon around the Monsoon Onset. J. Clim. 2007, 20, 4014–4032. [Google Scholar] [CrossRef]
- Fontaine, B.; Janicot, S. Wind-field coherence and its variations over west Africa. J. Clim. 1992, 5, 512–524. [Google Scholar] [CrossRef]
- Diawara, A.; Yoroba, F.; Kouadio, K.Y.; Kouassi, K.B.; Assamoi, E.M.; Diedhiou, A.; Assamoi, P. Climate Variability in the Sudano-Guinean Transition Area and Its Impact on Vegetation: The Case of the Lamto Region in Côte D ‘Ivoire. Adv. Meteorol. 2014, 2014, 831414. [Google Scholar] [CrossRef]
- Ta, S.; Kouadio, K.Y.; Ali, K.E.; Toualy, E.; Aman, A.; Yoroba, F. West Africa Extreme Rainfall Events and Large-Scale Ocean Surface and Atmospheric Conditions in the Tropical Atlantic. Adv. Meteorol. 2016, 2016, 1940456. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Giorgi, F.; Gutowski, W.J. Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Environ. Resour. 2015, 40, 24. [Google Scholar] [CrossRef]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Deque, M.; Fernandez, J.; Hansler, A.; Meijgaard, E. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef]
- Riede, J.O.; Posada, R.; Fink, A.H.; Kaspar, F. Chapter 2—What’s on the 5th IPCC Report for West Africa. In Adaptation to Climate Change and Variability in Rural West Africa; Springer: Berlin/Heidelberg, Germany, 2016; pp. 7–24. [Google Scholar]
- Dosio, A.; Panitz, H.J. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim. Dyn. 2016, 46, 1599–1625. [Google Scholar] [CrossRef]
- Pinto, I.; Lennard, C.; Tadross, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.J.; Shongwe, M.E. Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Clim. Change 2016, 135, 14. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Wayne, H.R.; Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Diaconescu, E.P.; Gachon, P.; Scinocca, J.; Laprise, R. Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Clim. Dyn. 2015, 45, 1325–1354. [Google Scholar] [CrossRef]
- Klein, T.A.M.G.; Peterson, T.C.; Quadir, D.A.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.R.; Jaswal, A.K.; Kolli, R.K.; et al. Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res. 2006, 111, D16105. [Google Scholar] [CrossRef]
- Klein, T.A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorol. Organ. 2009, 72, 56. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 6, 851–870. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164, 242–267. [Google Scholar] [CrossRef]
- Sylla, M.B.; Gaye, A.; Jenkins, G.; Pal, J.S.; Giorgi, F. Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model. J. Geophys. Res. 2010, 115, 10. [Google Scholar] [CrossRef]
- Haensler, A.; Jacob, D.; Kabat, P.; Ludwig, F. Assessment of projected climate change signals over central Africa based on a multitude of global and regional climate projections. Climate Change Scenarios for the Congo Basin. 2013, pp. 11–42. Available online: www.climate-service-center.de/imperia/md/content/csc/csc-report11_optimized.pdf (accessed on 31 March 2018).
- Kalognomou, E.A.; Lennard, C.; Shongwe, M.; Pinto, I.; Favre, A.; Kent, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.J.; et al. A Diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J. Clim. 2013, 26, 9477–9506. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Taylor, K.E. Taylor Diagram Primer. Work Paper. pp. 1–4. 2005. Available online: https://bigladdersoftware.com/projects/elements/ (accessed on 31 March 2018).
- Diallo, I.; Giorgi, F.; Deme, A.; Tall, M.; Mariotti, L.; Gaye, A.T. Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim. Dyn. 2016, 47, 3931–3954. [Google Scholar] [CrossRef]
- Sylla, M.B.; Nikiema, P.M.; Gibba, P.; Kebe, I.; Ama, N.; Klutse, B. Climate Change over West Africa: Recent Trends and Future Projections. 2016. pp. 25–40. Available online: http://link.springer.com/10.1007/978-3-319-31499-0 (accessed on 31 March 2018).
- Abiodun, B.J.; Adegoke, J.; Abatan, A.A.; Ibe, C.A.; Egbebiyi, T.S.; Engelbrecht, F.; Pinto, I. Potential impacts of climate change on extreme precipitation over four African coastal cities. Clim. Chang. 2017, 143, 399–413. [Google Scholar] [CrossRef]
- Sarr, A.B.; Camara, M. Evolution Des Indices Pluviométriques Extrêmes Par L’analyse De Modèles Climatiques Régionaux Du Programme CORDEX: Les Projections Climatiques Sur Le Sénégal. Eur. Sci. J. 2017, 13, 206–222. Available online: http://eujournal.org/index.php/esj/article/view/9521/9029 (accessed on 31 March 2018). [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Fotso-Nguemo, T.C.; Diallo, I.; Diakhaté, M.; Vondou, D.A.; Mbaye, M.L.; Haensler, A.; Haye, A.T.; Tchawouau, C. Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa. Clim. Chang. 2019, 19, 339–357. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 791–802. [Google Scholar]
- Barbier, J. Extrêmes Climatiques: Les Vagues de Chaleur au Printemps Sahélien. Ph.D. Thesis, l’Université Toulouse, Toulouse, France, 2017; p. 160. [Google Scholar]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- GIEC. Résumé à l’Intention des Décideurs. Bilan 2007 des Chang Clim Impacts, Adapt Vulnérabilité Contribut du Groupe Trav II au Quatrième Rapp d’Evaluation Rapp du Groupe d’Experts Intergouv sur l’Evolution du Clim; Parry, M.L., Canzani, O.F., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in largescale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
Simulations/Observation | Variables | Horizontal Resolution/Period | Scenarios |
---|---|---|---|
4 CORDEX 2 simulations 1 observation (CPC) 1 | Maximum temperature Precipitation | 0.44° (≈50 Km) 1950–2005 2006–2100 1979–present | 3 RCP4.5 RCP8.5 |
1 RCMs | 2 GCMs | Denotation |
---|---|---|
CCCma-CanRCM4 | CanESM2 | CCCMA |
SMHI-RCA4 | CNRM-CM5 | RCA |
DMI-HIRHAM5 | EC-EARTH-r3 | HIRHAM |
CLMcom-CCLM4-8-17 | MPI-ESM-LR | CCLM |
Type of Index | Symbol | Expression | Unit |
---|---|---|---|
Precipitation | CDD 1 | CDD ( | day |
CWD 2 | CWD ( | day | |
Temperature | HWDI 3 | HWDI: , in an interval of at least three (03) consecutive days | day |
CDD | |||||
MME | HIRHAM | CCCMA | RCA | CCLM | |
GG | 0.99 | 0.99 | 0.90 | 0.96 | 0.95 |
ES | 0.96 | 0.96 | 0.91 | 0.995 | 0.94 |
WS | 0.99 | 0.97 | 0.92 | 0.995 | 0.95 |
CDD number | |||||
GG | 0.99 | 0.90 | 0.90 | 0.96 | 0.91 |
ES | 0.81 | 0.85 | 0.5 | 0.95 | 0.90 |
WS | 0.91 | 0.91 | 0.7 | 0.94 | 0.94 |
CWD | |||||
MME | HIRHAM | CCCMA | RCA | CCLM | |
GG | 0.99 | −0.92 | 0.95 | 0.97 | 0.95 |
ES | 0.95 | 0.97 | 0.82 | 0.97 | 0.95 |
WS | 0.97 | 0.96 | 0.92 | 0.98 | 0.94 |
CWD number | |||||
GG | 0.90 | −0.75 | 0.70 | 0.88 | 0.87 |
ES | 0.82 | 0.92 | 0.58 | 0.78 | 0.85 |
WS | 0.85 | 0.82 | 0.62 | 0.78 | 0.78 |
HWDI | |||||
MME | HIRHAM | CCCMA | RCA | CCLM | |
GG | 0.42 | 0.62 | 0.40 | 0.50 | 0.80 |
ES | 0.85 | 0.75 | 0.38 | 0.60 | 0.80 |
WS | 0.84 | 0.85 | 0.40 | 0.50 | 0.78 |
HWDI number | |||||
GG | 0.58 | 0.56 | 0.50 | 0.50 | 0.30 |
ES | 0.65 | 0.80 | 0.30 | 0.58 | 0.65 |
WS | 0.70 | 0.80 | 0.20 | 0.62 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapo, A.L.M.; Kouassi, B.K.; Diawara, A.; Yoroba, F.; Famien, A.M.L.; Touré, P.R.; Kouadio, K.; Tiemoko, D.T.; Sylla, M.B.; Diedhiou, A. Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations. Atmosphere 2023, 14, 1582. https://doi.org/10.3390/atmos14101582
Yapo ALM, Kouassi BK, Diawara A, Yoroba F, Famien AML, Touré PR, Kouadio K, Tiemoko DT, Sylla MB, Diedhiou A. Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations. Atmosphere. 2023; 14(10):1582. https://doi.org/10.3390/atmos14101582
Chicago/Turabian StyleYapo, Assi Louis Martial, Benjamin Komenan Kouassi, Adama Diawara, Fidèle Yoroba, Adjoua Moise Landry Famien, Pêlèmayo Raoul Touré, Kouakou Kouadio, Dro Touré Tiemoko, Mouhamadou Bamba Sylla, and Arona Diedhiou. 2023. "Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations" Atmosphere 14, no. 10: 1582. https://doi.org/10.3390/atmos14101582
APA StyleYapo, A. L. M., Kouassi, B. K., Diawara, A., Yoroba, F., Famien, A. M. L., Touré, P. R., Kouadio, K., Tiemoko, D. T., Sylla, M. B., & Diedhiou, A. (2023). Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations. Atmosphere, 14(10), 1582. https://doi.org/10.3390/atmos14101582