Characteristics of Temporal and Spatial Changes in Ozone and PM2.5 and Correlation Analysis in Heilongjiang Province
Abstract
:1. Introduction
2. Sources and Methods
2.1. Data Sources
2.2. Research Methodology
3. Results and Discussion
3.1. Time Variation Characteristics of O3 and PM2.5
3.1.1. Year-by-Year Change Characteristics
3.1.2. Month-by-Month Change Characteristics
3.1.3. Hour-by-Hour Change Characteristics
3.2. Spatial Variation Characteristics of O3 and PM2.5
3.3. O3 and PM2.5 Correlation Analysis
3.3.1. Year-by-Year Correlation Analysis
3.3.2. Month-by-Month Correlation Analysis
3.3.3. Correlation Analysis of Different air Quality Categories
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, W.; Wang, X.; Cheng, S.; Wang, R. Regional collaboration to simultaneously mitigate PM2.5 and O3 pollution in Beijing-Tianjin-Hebei and the surrounding area: Multi-model synthesis from multiple data sources. Sci. Total Environ. 2022, 820, 153309. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Liu, Y.; He, J.; Zhang, L.; Lu, S.; Zhang, X. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 1: Synoptic circulation patterns and pollution. Sci. Total Environ. 2022, 815, 152770. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Wang, X.; Cheng, S.; Wang, R. Regional division and influencing mechanisms for the collaborative control of PM2.5 and O3 in China: A joint application of multiple mathematic models and data mining technologies. J. Clean. Prod. 2022, 337, 130607. [Google Scholar] [CrossRef]
- Qiao, L.; Chen, Z.; Takada, C.; Chiba, H.; Inoue, K.; Hui, S.; Ye, S. Quantitative evaluation on the degradation process of the pulmonary surfactant monolayer when exposed to low-level ozone of ambient environment. Anal. Chem. 2022, 94, 8651–8658. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Sha, Y.; Yang, C.; Lai, H.; Sun, C.; Zhao, W.; Zhang, A.; Qi, Q.; Xie, Y. Ozone-Induced Lung and Bronchial Injury: A Mouse Model Study. Atmosphere 2022, 13, 1562. [Google Scholar] [CrossRef]
- Yu, R.; Lin, Y.; Zou, J.; Dan, Y.; Cheng, C. Review on atmospheric ozone pollution in China: Formation, spatiotemporal distribution, precursors and affecting factors. Atmosphere 2021, 12, 1675. [Google Scholar] [CrossRef]
- Hodgson, J.R.; Chapman, L.; Pope, F.D. The Diamond League athletic series: Does the air quality sparkle? Int. J. Biometeorol. 2021, 65, 1427–1442. [Google Scholar] [CrossRef]
- Pleijel, H.; Danielsson, H.; Broberg, M.C. Benefits of the Phytotoxic Ozone Dose (POD) index in dose-response functions for wheat yield loss. Atmos. Environ. 2022, 268, 118797. [Google Scholar] [CrossRef]
- Sharps, K.; Hayes, F.; Harmens, H.; Mills, G. Ozone-induced effects on leaves in African crop species. Environ. Pollut. 2021, 268, 115789. [Google Scholar] [CrossRef]
- Lin, H.; Chen, M.; Gao, Y.; Wang, Z.; Jin, F. Tussilagone protects acute lung injury from PM2.5 via alleviating Hif-1α/NF-κB-mediated inflammatory response. Environ. Toxicol. 2022, 37, 1198–1210. [Google Scholar] [CrossRef]
- Sun, W.; Huo, J.; Li, R.; Wang, D.; Yao, L.; Fu, Q.; Feng, J. Effects of energy structure differences on chemical compositions and respiratory healthof PM2.5 during late autumn and winter in China. Sci. Total Environ. 2022, 824, 153850. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, D.G.; Wang, L.; Kang, H.; Hwang, M. Acute Moderate-Intensity Aerobic Exercise under High PM2.5 Levels Does Not Influence the Pulmonary Function and Lung Diffusion Capacity in Healthy Young Men. Appl. Sci. 2022, 12, 10080. [Google Scholar] [CrossRef]
- Hopke, P.K.; Hidy, G. Changing emissions results in changed PM2.5 composition and health impacts. Atmosphere 2022, 13, 193. [Google Scholar] [CrossRef]
- Wong, Y.K.; Huang, X.H.; Cheng, Y.Y.; Yu, J.Z. Estimating primary vehicular emission contributions to PM2.5 using the chemical mass balance model: Accounting for gas-particle partitioning of organic aerosols and oxidation degradation of hopanes. Environ. Pollut. 2021, 291, 118131. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, Y.; Mei, S.; Shi, C.; Liu, Y.; Pan, L.; Li, K.; Zhang, B.; Wang, J.; Zhong, Z. Monitoring and modelling of PM2.5 concentration at subway station construction based on IoT and LSTM algorithm optimization. J. Clean. Prod. 2022, 360, 132179. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Huo, R.; Shi, Z.; Sun, Y.; Feng, Y.; Harrison, R.M. Organic compound source profiles of PM2.5 from traffic emissions, coal combustion, industrial processes and dust. Chemosphere 2021, 278, 130429. [Google Scholar] [CrossRef]
- Yang, C.; Hong, Z.; Chen, J.; Xu, L.; Zhuang, M.; Huang, Z. Characteristics of secondary organic aerosols tracers in PM2.5 in three central cities of the Yangtze river delta, China. Chemosphere 2022, 293, 133637. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Liu, Q.; Qi, X.; Qu, J.; Zhang, S.; Wang, X.; Jia, K.; Zhu, M. Study on chemical components and sources of PM2.5 during heavy air pollution periods at a suburban site in Beijing of China. Atmos. Pollut. Res. 2021, 12, 188–199. [Google Scholar] [CrossRef]
- Cheng, M.; Tang, G.; Lv, B.; Li, X.; Wu, X.; Wang, Y.; Wang, Y. Source apportionment of PM2.5 and visibility in Jinan, China. J. Environ. Sci. 2021, 102, 207–215. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.X.; Su, H.; Liu, S.X.; Zhou, J.M.; Zhao, Z.Z.; Wang, Q.Y.; Prévôt, A.; Cao, J.J. Effects of Aerosol Water Content on the formation of secondary inorganic aerosol during a Winter Heavy PM2.5 Pollution Episode in Xi’an, China. Atmos. Environ. 2021, 252, 118304. [Google Scholar] [CrossRef]
- Sharma, A.; Valdes, A.C.F.; Lee, Y. Impact of Wildfires on Meteorology and Air Quality (PM2.5 and O3) over Western United States during September 2017. Atmosphere 2022, 13, 262. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, Y.; He, Y.; Walters, W.W.; Ni, Q.; Liu, X.; Xu, G.; Shao, J.; Jiang, C. Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution. Sci. Total Environ. 2021, 753, 142238. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qi, Z.; Ni, X.; Dong, M.; Ma, M.; Xue, W.; Zhang, Q.; Wang, J. How to apply O3 and PM2.5 collaborative control to practical management in China: A study based on meta-analysis and machine learning. Sci. Total Environ. 2021, 772, 145392. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Liu, R.; Chen, X.; Feng, Y.; Gao, P.; Huang, H.; Fan, L.; Ye, D. Volatile organic compounds concentration profiles and control strategy in container manufacturing industry: Case studies in China. J. Environ. Sci. 2021, 104, 296–306. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Zhang, R. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia. Atmos. Res. 2014, 140–141, 14–27. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of east China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Li, X.; Bei, N.; Wu, J.; Wang, R.; Liu, S.; Liu, L.; Jiang, Q.; Tie, X.; Molina, L.T.; Li, G. Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China. Environ. Pollut. 2022, 303, 119157. [Google Scholar] [CrossRef]
- Shao, M.; Wang, W.; Yuan, B.; Parrish, D.D.; Li, X.; Lu, K.; Wu, L.; Wang, X.; Mo, Z.; Yang, S. Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Sci. Total Environ. 2021, 788, 147712. [Google Scholar] [CrossRef]
- Wang, W.; Parrish, D.D.; Li, X.; Shao, M.; Liu, Y.; Mo, Z.; Lu, S.; Hu, M.; Fang, X.; Wu, Y. Exploring the drivers of the increased ozone production in Beijing in summertime during 2005–2016. Atmos. Chem. Phys. 2020, 20, 15617–15633. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, X.; Zhang, H. Modeling PM2.5 and O3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China. Chemosphere 2020, 254, 126735. [Google Scholar] [CrossRef]
- Tie, X.; Long, X.; Li, G.; Zhao, S.; Cao, J.; Xu, J. Ozone enhancement due to the photodissociation of nitrous acid in eastern China. Atmos. Chem. Phys. 2019, 19, 11267–11278. [Google Scholar] [CrossRef]
- Lu, C.; Mao, J.; Wang, L.; Guan, Z.; Zhao, G.; Li, M. An unusual high ozone event over the North and Northeast China during the record-breaking summer in 2018. J. Environ. Sci. 2021, 104, 264–276. [Google Scholar] [CrossRef]
- Liu, X.; Guo, H.; Zeng, L.; Lyu, X.; Wang, Y.; Zeren, Y.; Yang, J.; Zhang, L.; Zhao, S.; Li, J.; et al. Photochemical ozone pollution in five Chinese megacities in summer 2018. Sci. Total Environ. 2021, 801, 149603. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, T.; Lovreškov, L.; Jelić, G.; Anav, A.; Popa, I.; Fornasier, M.F.; Proietti, C.; Limić, I.; Butorac, L.; Vitale, M.; et al. Impact of ground-level ozone on Mediterranean forest ecosystems health. Sci. Total Environ. 2021, 783, 147063. [Google Scholar] [CrossRef] [PubMed]
- Tadic, I.; Nussbaumer, C.M.; Bohn, B.; Harder, H.; Marno, D.; Martinez, M.; Obersteiner, F.; Parchatka, U.; Pozzer, A.; Rohloff, R. Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmos. Chem. Phys. 2021, 21, 8195–8211. [Google Scholar] [CrossRef]
- Feng, X.; Feng, Y.; Chen, Y.; Cai, J.; Li, Q.; Chen, J. Source apportionment of PM2.5 during haze episodes in Shanghai by the PMF model with PAHs. J. Clean. Prod. 2022, 330, 129850. [Google Scholar] [CrossRef]
- He, C.; Hong, S.; Mu, H.; Tu, P.; Yang, L.; Ke, B.; Huang, J. Characteristics and Meteorological Factors of Severe Haze Pollution in China. Adv. Meteorol. 2021, 2021, 6680564. [Google Scholar] [CrossRef]
- Chen, B.; Liu, M.; Ye, W.; Zhang, B. Assessing the impact of green nudges on ozone concentration: Evidence from China’s night refueling policy. J. Environ. Manag. 2022, 312, 114899. [Google Scholar] [CrossRef]
- Yang, X.; Wu, K.; Lu, Y.; Wang, S.; Qiao, Y.; Zhang, X.; Wang, Y.; Wang, H.; Liu, Z.; Liu, Y.; et al. Origin of regional springtime ozone episodes in the Sichuan Basin, China: Role of synoptic forcing and regional transport. Environ. Pollut. 2021, 278, 116845. [Google Scholar] [CrossRef]
- Zhang, G.; Jing, S.; Xu, W.; Gao, Y.; Yan, C.; Liang, L.; Huang, C.; Wang, H. Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: Regional transport and thermal decomposition. Environ. Pollut. 2021, 274, 116570. [Google Scholar] [CrossRef]
- Wang, H.; Ding, K.; Huang, X.; Wang, W.; Ding, A. Insight into ozone profile climatology over northeast China from aircraft measurement and numerical simulation. Sci. Total Environ. 2021, 785, 147308. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Li, L.; Li, J.; Qin, M.; Wang, X.; Ying, Q.; Liao, H.; Guo, S.; Hu, M.; Zhang, Y.; et al. Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PM2.5 and O3. Sci. Total Environ. 2021, 779, 146619. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Cai, X.; Miao, Y.; Yu, M. Synoptic condition and boundary layer structure regulate PM2.5 pollution in the Huaihe River Basin, China. Atmos. Res. 2022, 269, 106041. [Google Scholar] [CrossRef]
- Guan, P.; Wang, X.; Cheng, S.; Zhang, H. Temporal and spatial characteristics of PM2.5 transport fluxes of typical inland and coastal cities in China. J. Environ. Sci. 2021, 103, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Feng, Y.; Ren, L.; Lu, X.; Zhong, Y.; Han, X.; Ning, P. Mass concentration, chemical composition, and source characteristics of PM2.5 in a plateau slope city in southwest China. Atmosphere 2021, 12, 611. [Google Scholar] [CrossRef]
IAQI | O3 Concentration (µg/m3) | PM2.5 Concentration (µg/m3) |
---|---|---|
0 | 0 | 0 |
50 | 100 | 35 |
100 | 160 | 75 |
150 | 215 | 115 |
200 | 265 | 150 |
300 | 800 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, L.; Li, L.; Wang, P.; Xing, Y.; Feng, C.; Zhang, R. Characteristics of Temporal and Spatial Changes in Ozone and PM2.5 and Correlation Analysis in Heilongjiang Province. Atmosphere 2023, 14, 1526. https://doi.org/10.3390/atmos14101526
Xuan L, Li L, Wang P, Xing Y, Feng C, Zhang R. Characteristics of Temporal and Spatial Changes in Ozone and PM2.5 and Correlation Analysis in Heilongjiang Province. Atmosphere. 2023; 14(10):1526. https://doi.org/10.3390/atmos14101526
Chicago/Turabian StyleXuan, Lichun, Lei Li, Pengjie Wang, Yanfeng Xing, Chengcheng Feng, and Rui Zhang. 2023. "Characteristics of Temporal and Spatial Changes in Ozone and PM2.5 and Correlation Analysis in Heilongjiang Province" Atmosphere 14, no. 10: 1526. https://doi.org/10.3390/atmos14101526
APA StyleXuan, L., Li, L., Wang, P., Xing, Y., Feng, C., & Zhang, R. (2023). Characteristics of Temporal and Spatial Changes in Ozone and PM2.5 and Correlation Analysis in Heilongjiang Province. Atmosphere, 14(10), 1526. https://doi.org/10.3390/atmos14101526