Spatial Dependence Analysis of Weekly Moving Cumulative Rainfall for Flood Risk Assessment
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Materials and Methods
3.1. Marginal Distribution
3.2. Extreme Value Copulas
3.3. Goodness-of-Fit Statistical Tests
3.4. Selection of Extreme Value Copula Models
3.5. Risk Analysis
4. Results
4.1. Marginal Probability Distribution
4.2. Extreme Copula Value Analysis
4.2.1. Correlation between Stations
4.2.2. Copula Function Fitting
4.3. Risk Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, D.S.; Máñez Costa, M.; Celliers, L.; Sutherland, C. Informal Settlements and Flooding: Identifying Strengths and Weaknesses in Local Governance for Water Management. Water 2018, 10, 871. [Google Scholar] [CrossRef]
- Zhao, W. Extreme weather and climate events in China under changing climate. Natl. Sci. Rev. 2020, 7, 938–943. [Google Scholar] [CrossRef]
- Lee, S.; Zhao, J. Adaptation to climate change: Extreme events versus gradual changes. J. Econ. Dyn. Control 2021, 133, 104262. [Google Scholar] [CrossRef]
- Fahrenkamp-Uppenbrink, J. Extreme events under climate change. Science 2015, 349, 1502. [Google Scholar] [CrossRef]
- Satoh, M. Climate Change of Extreme Weather Events. Trends Sci. 2022, 27, 81–84. [Google Scholar] [CrossRef] [PubMed]
- CRED (Centre for Research on the Epidemiology of Disasters). CRED Crunch 64—Extreme Weather Events in Europe; Technical Report; CRED, Université Catholique de Louvain: Ottignies-Louvain-la-Neuve, Belgium, 2021. [Google Scholar]
- Shi, P.; Kasperson, R. World Atlas of Natural Disaster Risk; Springer: Berlin/Heidelberg, Germany, 2015; pp. 41–56. [Google Scholar]
- Pathak, S.; Olmo, J.C. Analysing spatial interdependence among the 2011 Thailand flood-affected small and medium enterprises for reduction of disaster recovery time period. Geoenviron. Disasters 2021, 8, 8. [Google Scholar] [CrossRef]
- Javelle, P.; Braud, I.; Saint-Martin, C.; Payrastre, O.; Borga, M.; Gourley, J.; Zappa, M.; Javelle, P.; Braud, I.; Saint-Martin, C.; et al. Improving flash flood forecasting and warning capabilities. In Mediterranean Region under Climate Change. A Scientific Update; IRD: Wellington, New Zealand, 2016; pp. 587–595. [Google Scholar]
- Nasrollahi, N. Introduction to the Current State of Satellite Precipitation Products; Springer International Publishing: Cham, Swizerland, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Munpa, P.; Kittipongvises, S.; Phetrak, A.; Sirichokchatchawan, W.; Taneepanichskul, N.; Lohwacharin, J.; Polprasert, C. Climatic and Hydrological Factors Affecting the Assessment of Flood Hazards and Resilience Using Modified UNDRR Indicators: Ayutthaya, Thailand. Water 2022, 14, 1603. [Google Scholar] [CrossRef]
- Rerngnirunsathit, P. Thailand Country Profiles 2011; Department of Disaster Prevention and Mitigation, Ministry of Interior: Bangkok, Thailand, 2012. [Google Scholar]
- Waiyasusri, K.; Wetchayont, P.; Tananonchai, A.; Suwanmajo, D. Flood Susceptibility Mapping Using Logistic Regression Analysis In Lam Khan Chu Watershed, Chaiyaphum Province, Thailand. Geogr. Environ. Sustain. 2023, 16, 41–56. [Google Scholar] [CrossRef]
- Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E.; et al. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224. [Google Scholar] [CrossRef]
- Kalantari, Z.; Sörensen, J. Link between land use and flood risk assessment in urban areas. Multidiscip. Digit. Publ. Inst. Proc. 2020, 30, 62. [Google Scholar]
- Dottori, F.; Alfieri, L.; Bianchi, A.; Skoien, J.; Salamon, P. A new dataset of river flood hazard maps for Europe and the Mediterranean Basin. Earth Syst. Sci. Data 2022, 14, 1549–1569. [Google Scholar] [CrossRef]
- Chatzichristaki, C.; Stefanidis, S.; Stefanidis, P.; Stathis, D. Analysis of the flash flood in Rhodes Island (South Greece) on 22 November 2013. Silva 2015, 16, 76–86. [Google Scholar]
- Senapeng, P.; Prahadchai, T.; Guayjarernpanishk, P.; Park, J.S.; Busababodhin, P. Spatial modeling of extreme temperature in northeast Thailand. Atmosphere 2022, 13, 589. [Google Scholar] [CrossRef]
- Yoon, S.; Kumphon, B.; Park, J.S. Spatial modeling of extreme rainfall in northeast Thailand. J. Appl. Stat. 2015, 42, 1813–1828. [Google Scholar] [CrossRef]
- Brunner, M.I.; Furrer, R.; Favre, A.C. Modeling the spatial dependence of floods using the Fisher copula. Hydrol. Earth Syst. Sci. 2019, 23, 107–124. [Google Scholar] [CrossRef]
- Forecasting Weekly Rainfall Using Data Mining Technologies. In Proceedings of the 2020 From Innovation to Impact (FITI), Colombo, Sri Lanka, 15 December 2020. [CrossRef]
- Lavanya, K.; Jain, A.V.; Jain, H.V. Optimization and Decision-Making in Relation to Rainfall for Crop Management Techniques. In Information Systems Design and Intelligent Applications, Proceedings of the Information Systems Design and Intelligent Applications: Proceedings of Fifth International Conference INDIA 2018 Volume 1; Springer: Berlin/Heidelberg, Germany, 2019; pp. 255–266. [Google Scholar]
- Areerachakul, N.; Prongnuch, S.; Longsomboon, P.; Kandasamy, J. Quantitative Precipitation Estimation (QPE) Rainfall from Meteorology Radar over Chi Basin. Hydrology 2022, 9, 178. [Google Scholar] [CrossRef]
- Thai Meteorological Department. Climatic Informations; Technical Report; Thai Meteorological Department: Bangkok, Thailand, 2021. [Google Scholar]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: New York, NY, USA, 2001. [Google Scholar]
- Sklar, M. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Papukdee, N.; Park, J.S.; Busababodhin, P. Penalized likelihood approach for the four-parameter kappa distribution. J. Appl. Stat. 2022, 49, 1559–1573. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Durante, F. On the return period and design in a multivariate framework. Hydrol. Earth Syst. Sci. 2011, 15, 3293–3305. [Google Scholar] [CrossRef]
- Gabriel, R.K.; Fan, Y. Multivariate hydrologic risk analysis for river Thames. Water 2022, 14, 384. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, G.; Zhang, Y.; Li, Y. Uncertainty quantification for multivariate eco-hydrological risk in the Xiangxi River within the Three Gorges Reservoir Area in China. Engineering 2018, 4, 617–626. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Coles, S.G.; Tawn, J.A. Modelling extreme multivariate events. J. R. Stat. Soc. Ser. Methodol. 1991, 53, 377–392. [Google Scholar] [CrossRef]
- Coles, S.G.; Tawn, J.A. Statistical methods for multivariate extremes: An application to structural design. J. R. Stat. Soc. Ser. Appl. Stat. 1994, 43, 1–31. [Google Scholar] [CrossRef]
- Galambos, J. Order statistics of samples from multivariate distributions. J. Amer. Statist. Assoc. 1975, 70, 674–680. [Google Scholar]
- Gumbel, E.J. Distributions des valeurs extremes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris 1960, 9, 171–173. [Google Scholar]
- Husler, J.; Reiss, R.D. Maxima of normal random vectors: Between independence and complete dependence. Stat. Probab. Lett. 1989, 7, 283–286. [Google Scholar] [CrossRef]
- Joe, H. Families of min-stable multivariate exponential and multivariate extreme value distributions. Stat. Probab. Lett. 1990, 9, 75–81. [Google Scholar] [CrossRef]
- Smith, R.L. Extreme value theory. In Handbook of Applicable Mathematics; Ledermann, W., Ed.; John Wiley: Chichester, UK, 1990; Volume 7, pp. 437–471. [Google Scholar]
- Tawn, J.A. Bivariate extreme value theory: Models and estimation. Biometrika 1988, 75, 397–415. [Google Scholar] [CrossRef]
Station ID | Copula Function | D of LR-Test | AIC | ||
---|---|---|---|---|---|
ST5 | ST6 | 0.497 | Negbilog | 0.090 | 603.695 |
ST8 | −0.002 | Log | 0.060 | 609.535 | |
ST10 | 0.062 | HR | 0.044 | 599.181 | |
ST11 | −0.058 | Alog | 0.086 | 609.767 | |
ST6 | ST8 | 0.060 | Log | 0.005 | 630.730 |
ST10 | 0.132 | Bilog | 0.974 | 618.780 | |
ST11 | −0.046 | Neglog | 0.654 | 634.101 | |
ST8 | ST10 | −0.221 | Neglog | 0.001 | 615.923 |
ST11 | 0.262 | Alog | 1.177 | 623.090 | |
ST10 | ST11 | −0.277 | Neglog | 0.029 | 619.134 |
Region | RP (Years) | Rainfall by Region (mm.) | (Years) | Risk Value | |
---|---|---|---|---|---|
Region 1 | Region 2 | ||||
ST5–ST6 | 2 | 83.80 | 90.90 | 3.52 | 1.00 |
5 | 110.24 | 117.42 | 23.57 | 0.75 | |
10 | 122.16 | 120.93 | 56.08 | 0.44 | |
25 | 148.67 | 141.10 | 211.81 | 0.14 | |
50 | 156.60 | 147.90 | 431.69 | 0.07 | |
100 | 160.35 | 153.45 | 712.76 | 0.04 | |
ST5–ST8 | 2 | 84.80 | 74.70 | 3.50 | 1.00 |
5 | 109.68 | 94.38 | 11.56 | 0.94 | |
10 | 134.73 | 118.63 | 44.65 | 0.52 | |
25 | 152.38 | 139.89 | 118.12 | 0.24 | |
50 | 172.19 | 144.39 | 205.60 | 0.14 | |
100 | 186.30 | 146.35 | 294.60 | 0.10 | |
ST5–ST10 | 2 | 84.80 | 97.30 | 4.26 | 1.00 |
5 | 109.68 | 114.32 | 12.18 | 0.94 | |
10 | 134.73 | 127.02 | 30.54 | 0.66 | |
25 | 152.38 | 193.00 | 164.45 | 0.18 | |
50 | 172.19 | 196.15 | 240.45 | 0.12 | |
100 | 186.30 | 198.73 | 314.59 | 0.10 | |
ST5–ST11 | 2 | 84.80 | 88.35 | 3.48 | 1.00 |
5 | 109.68 | 119.68 | 13.84 | 0.91 | |
10 | 134.73 | 148.85 | 41.32 | 0.54 | |
25 | 152.38 | 168.50 | 77.52 | 0.34 | |
50 | 172.19 | 172.20 | 115.09 | 0.24 | |
100 | 186.29 | 172.20 | 147.98 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chomphuwiset, P.; Phoophiwfa, T.; Kannika, W.; Seenoi, P.; Suraphee, S.; Park, J.-S.; Busababodhin, P. Spatial Dependence Analysis of Weekly Moving Cumulative Rainfall for Flood Risk Assessment. Atmosphere 2023, 14, 1525. https://doi.org/10.3390/atmos14101525
Chomphuwiset P, Phoophiwfa T, Kannika W, Seenoi P, Suraphee S, Park J-S, Busababodhin P. Spatial Dependence Analysis of Weekly Moving Cumulative Rainfall for Flood Risk Assessment. Atmosphere. 2023; 14(10):1525. https://doi.org/10.3390/atmos14101525
Chicago/Turabian StyleChomphuwiset, Prapawan, Tossapol Phoophiwfa, Wanlop Kannika, Palakorn Seenoi, Sujitta Suraphee, Jeong-Soo Park, and Piyapatr Busababodhin. 2023. "Spatial Dependence Analysis of Weekly Moving Cumulative Rainfall for Flood Risk Assessment" Atmosphere 14, no. 10: 1525. https://doi.org/10.3390/atmos14101525
APA StyleChomphuwiset, P., Phoophiwfa, T., Kannika, W., Seenoi, P., Suraphee, S., Park, J. -S., & Busababodhin, P. (2023). Spatial Dependence Analysis of Weekly Moving Cumulative Rainfall for Flood Risk Assessment. Atmosphere, 14(10), 1525. https://doi.org/10.3390/atmos14101525