Study on the Optical–Physical Properties of Aerosol Layers in Africa Based on a Laser Satellite
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Materials and Methods
3. Results and Discussion
3.1. Interannual Variability in Aerosol Layer Properties in Africa
3.2. Seasonal Variations in the African Aerosol Layer
3.3. Correlations of Aerosol Properties over Africa
4. Conclusions
- (1)
- The Sahara Desert accumulated large amounts of dust aerosols during the spring and summer months, resulting in high AOD (AODT, AODL) values. Organic carbon (OC) and black carbon (BC) aerosols emitted from the Congo Basin region will lead to an increase in AOD (AODT, AODL) values. Equatorial Guinea Gulf region’s perennial high temperatures enhanced atmospheric vertical convections and aerosol stratifications in December–February, leading to high N values.
- (2)
- Thicker aerosol layers had a high-frequency occurrence in northern Africa and the Congo Basin regions because of the high content of dust aerosols and artificial aerosol loading. Low values of PAODL indicated more stratified aerosol layers. PAODL values decreased in the Equatorial Guinea Gulf region because of high temperatures, strong convections, and obvious stratifications.
- (3)
- Aerosols in region B were mainly dominated by spherical features. Irregularly shaped aerosols were mainly observed in region A. Higher DRL values were observed in the A region in spring and summer because of frequent dust activities. DRL values were also high in the southern B region from December to May. This was due to anthropogenic discharges from industrial activities, animal husbandry, and tourism. Also due to the high humidity that occurred in this season, particles were covered by a water envelope, which can increase the size of particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A Satellite View of Aerosols in the Climate System. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Kirkpatrick, M.P.; Stevens, D.E.; Toon, O.B. The Impact of Humidity above Stratiform Clouds on Indirect Aerosol Climate Forcing. Nature 2004, 432, 1014–1017. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H.E.; Nieminen, T.; Petäjä, T.; Sipilä, M.; Schobesberger, S.; Rantala, P.; et al. Direct Observations of Atmospheric Aerosol Nucleation. Science 2013, 339, 943–946. [Google Scholar] [CrossRef]
- Kaiser, J. How Dirty Air Hurts the Heart. Science 2015, 307, 1858–1859. [Google Scholar] [CrossRef]
- Kaiser, J.; Granmar, M. Mounting Evidence Indicts Fine-Particle Pollution. Science 2005, 307, 1858–1861. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, C.S.; Nowak, A.; Müller, T.; Pfeifer, S.; Cheng, Y.F.; Deng, Z.; Liu, P.F.; Xu, W.Y.; Ran, L.; et al. Aerosol Optical Properties in the North China Plain during Hachi Campaign: An in-Situ Optical Closure Study. Atmos. Chem. Phys. 2011, 11, 9567–9605. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Tsay, S.C.; Lau, K.M.; Holben, B.; Bell, S.; Smirnov, A.; Li, C.; Hansell, R.; Ji, Q.; et al. Accumulation of Aerosols over the Indo-Gangetic Plains and Southern Slopes of the Himalayas: Distribution, Properties and Radiative Effects during the 2009 Pre-Monsoon Season. Atmos. Chem. Phys. Discuss. 2011, 11, 12841–12863. [Google Scholar] [CrossRef]
- Wang, H.; Xue, M.; Zhang, X.Y.; Liu, H.L.; Zhou, C.H.; Tan, S.C.; Che, H.Z.; Chen, B.; Li, T. Mesoscale Modeling Study of the Interactions between Aerosols and Pbl Meteorology during a Haze Episode in China Jing-Jin-Ji and Its near Surrounding Region—Part 1: Aerosol Distributions and Meteorological Features. Atmos. Chem. Phys. 2015, 15, 3257–3275. [Google Scholar] [CrossRef]
- Shen, X.J.; Sun, J.Y.; Zhang, X.Y.; Zhang, Y.M.; Zhang, L.; Che, H.C.; Ma, Q.L.; Yu, X.M.; Yue, Y.; Zhang, Y.W. Zhang. Characterization of Submicron Aerosols and Effect on Visibility during a Severe Haze-Fog Episode in Yangtze River Delta, China. Atmos. Environ. 2015, 120, 307–316. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (Aeronet) Sun and Sky Radiance Measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. Aeronet—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Slutsker, I.; Chatenet, B.; Pinker, R.T. Pinker. Diurnal Variability of Aerosol Optical Depth Observed at Aeronet (Aerosol Robotic Network) Sites. Geophys. Res. Lett. 2002, 29, 301–304. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, Z.; Zhong, L.; Wang, B.; Han, C.; Wang, Z.; Wang, Y.; Lu, L.; Amatya, P.M.; Ma, W.; et al. Combining Modis, Avhrr and in Situ Data for Evapotranspiration Estimation over Heterogeneous Landscape of the Tibetan Plateau. Atmos. Chem. Phys. 2014, 14, 1507–1515. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The Modis Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A.; Holben, B. Multiangle Imaging Spectroradiometer (Misr) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (Aeronet) Observations. J. Geophys. Res. Atmos. 2005, 110, D10S04. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Reid, J.S.; Hyer, E.J.; Eck, T.F.; Holben, B.N.; Kahn, R.A. A Critical Examination of Spatial Biases between Modis and Misr Aerosol Products—Application for Potential Aeronet Deployment. Atmos. Meas. Tech. 2011, 4, 2823–2836. [Google Scholar] [CrossRef]
- Liu, H.; Remer, L.A.; Huang, J.; Huang, H.-C.; Kondragunta, S.; Laszlo, I.; Oo, M.; Jackson, J.M. Preliminary Evaluation of S-Npp Viirs Aerosol Optical Thickness. J. Geophys. Res. Atmos. 2014, 119, 3942–3962. [Google Scholar] [CrossRef]
- Alejandro, S.B.; Koenig, G.G.; Bedo, D.; Swirbalus, T.; Frelin, R.; Woffinden, J.; Vaughan, J.M.; Brown, D.W.; Callan, R.; Davies, P.H.; et al. Atlantic Atmospheric Aerosol Studies: 1. Program Overview and Airborne Lidar. J. Geophys. Res. 1995, 100, 1035–1041. [Google Scholar] [CrossRef]
- Niranjan, K.; Madhavan, B.L.; Sreekanth, V. Micro Pulse Lidar Observation of High Altitude Aerosol Layers at Visakhapatnam Located on the East Coast of India. Geophys. Res. Lett. 2007, 34, 340–354. [Google Scholar] [CrossRef]
- Pappalardo, G.; Amodeo, A.; Pandolfi, M.; Wandinger, U.; Ansmann, A.; Bösenberg, J.; Matthias, V.; Amiridis, V.; De Tomasi, F.; Frioud, M.; et al. Aerosol Lidar Intercomparison in the Framework of the Earlinet Project. 3. Raman Lidar Algorithm for Aerosol Extinction, Backscatter, and Lidar Ratio. Appl. Opt. 2004, 43, 5370–5385. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the Calipso Mission and Caliop Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Liu, Z.; Winker, D.; Trepte, C. A Height Resolved Global View of Dust Aerosols from the First Year Calipso Lidar Measurements. J. Geophys. Res. Atmos. 2008, 113, 280–288. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Zhao, H.; Yao, W.; Li, L.; Zhang, L.; Wang, H.; Wang, Y.; Zhang, X. Three-Dimensional Climatology, Trends, and Meteorological Drivers of Global and Regional Tropospheric Type-Dependent Aerosols: Insights from 13 Years (2007–2019) of Caliop Observations. Atmos. Chem. Phys. 2021, 21, 15309–15336. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The Calipso Mission: A Global 3d View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. The Calipso Mission: Spaceborne Lidar for Observation of Aerosols and Clouds. In Proceedings of the 3rd International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, 21 March 2003. [Google Scholar]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial Performance Assessment of Caliop. Geophys. Res. Lett. 2007, 34, 228–262. [Google Scholar] [CrossRef]
- IPCC Working Group, I. Climate Change 2013: The Physical Science Basis. Contrib. Work. 2013, 43, 866–871. [Google Scholar]
- Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; et al. The Fertilizing Role of African Dust in the Amazon Rainforest: A First Multiyear Assessment Based on Data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar] [CrossRef]
- Korontzi, S.; Ward, D.E.; Susott, R.A.; Yokelson, R.J.; Justice, C.O.; Hobbs, P.V.; Smithwick, E.A.H.; Hao, W.M. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and Pm 2.5 for Southern African Savanna Fires. J. Geophys. Res. Atmos. 2003, 108, 4758. [Google Scholar] [CrossRef]
- Ward, D.E.; Hao, W.M.; Susott, R.A.; Babbitt, R.E.; Shea, R.W.; Kauffman, J.B.; Justice, C.O. Justice. Effect of Fuel Composition on Combustion Efficiency and Emission Factors for African Savanna Ecosystems. J. Geophys. Res. Atmos. 1996, 101, 23569–23576. [Google Scholar] [CrossRef]
- Prospero, J.M.; Lamb, P.J. African Droughts and Dust Transport to the Caribbean: Climate Change Implications. Science 2003, 302, 1024–1027. [Google Scholar] [CrossRef]
- Moulin, C.; Lambert, C.E.; Dulac, F.; Dayan, U. Control of Atmospheric Export of Dust from North Africa by the North Atlantic Oscillation. Nature 1997, 387, 691–694. [Google Scholar] [CrossRef]
- Engelbrecht, J.P.; Swanepoel, L.; Chow, J.C.; Watson, J.G.; Egami, R.T. Pm2.5 and PM10 Concentrations from the Qalabotjha Low-Smoke Fuels Macro-Scale Experiment in South Africa. Environ. Monit. Assess. 2001, 69, 1–15. [Google Scholar] [CrossRef]
- Viana, M.; Querol, X.; Alastuey, A.; Cuevas, E.; Rodrıguez, S. Influence of African Dust on the Levels of Atmospheric Particulates in the Canary Island Air Quality Network. Atmos. Environ. 2002, 36, 5861–5875. [Google Scholar] [CrossRef]
- Bryant, R.G.; Bigg, G.R.; Mahowald, N.M.; Eckardt, F.D.; Ross, S.G. Dust Emission Response to Climate in Southern Africa. J. Geophys. Res. Atmos. 2007, 112, D09207. [Google Scholar] [CrossRef]
- Ngaira, J.K.W. Impact of Climate Change on Agriculture in Africa by 2030. Sci. Res. Essays 2007, 2, 238–243. [Google Scholar]
- Dajuma, A.; Sylla, M.B.; Tall, M.; Almazroui, M.; Yassa, N.; Diedhiou, A.; Giorgi, F. Projected Expansion of Hottest Climate Zones over Africa during the Mid and Late 21st Century. Environ. Res. Clim. 2023, 2, 025002. [Google Scholar] [CrossRef]
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. Calipso Lidar Level 3 Aerosol Profile Product: Version 3 Algorithm Design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Gao, H.W.; Yu, Y.; Yao, X.H.; Gao, Y.; Zhang, C.; Fan, L. A New Approach Developed to Study Variability in North African Dust Transport Routes over the Atlantic during 2001–2015. Geophys. Res. Lett. 2017, 44, 10026–10035. [Google Scholar] [CrossRef]
- Jankowiak, I.; Tanré, D. Satellite Climatology of Saharan Dust Outbreaks: Method and Preliminary Results. J. Clim. 1992, 5, 646–656. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. A Numerical Study of the Contributions of Dust Source Regions to the Global Dust Budget. Glob Planet Chang. 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Li, X.; Savoie, D.; Voss, K.; Prospero, J.M.; Maring, H. Dominance of Mineral Dust in Aerosol Light-Scattering in the North Atlantic Trade Winds. Nature 1996, 380, 416–419. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A Global Model of Natural Volatile Organic Compound Emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Roth, B.; Okada, K. On the Modification of Sea-Salt Particles in the Coastal Atmosphere. Atmos. Environ. 1998, 32, 1555–1569. [Google Scholar] [CrossRef]
- Sievering, H.; Cainey, J.; Harvey, M.; McGregor, J.; Nichol, S.; Quinn, P. Aerosol Non-Sea-Salt Sulfate in the Remote Marine Boundary Layer under Clear-Sky and Normal Cloudiness Conditions: Ocean-Derived Biogenic Alkalinity Enhances Sea-Salt Sulfate Production by Ozone Oxidation. J. Geophys. Res. Atmos. 2004, 109, 47–53. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The Influence on Climate Forcing of Mineral Aerosols from Disturbed Soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Dagan, G.; Chemke, R. The Effect of Subtropical Aerosol Loading on Equatorial Precipitation. Geophys. Res. Lett. 2016, 43, 11048–11056. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Bilal, M.; Gong, W.; Zhang, Z.; Guo, G. The Characteristics of the Aerosol Optical Depth within the Lowest Aerosol Layer over the Tibetan Plateau from 2007 to 2014. Remote Sens. 2018, 10, 696. [Google Scholar] [CrossRef]
- Zhang, M.; Su, B.; Bilal, M.; Atique, L.; Usman, M.; Qiu, Z.; Ali, A.; Han, G. An Investigation of Vertically Distributed Aerosol Optical Properties over Pakistan Using Calipso Satellite Data. Remote Sens. 2020, 12, 2183. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Bilal, M.; Zhang, C.; Zhao, F.; Xie, X.; Khedher, K.M. Optical and Physical Characteristics of the Lowest Aerosol Layers over the Yellow River Basin. Atmophere 2019, 10, 638. [Google Scholar] [CrossRef]
Parameter | Abbreviation |
---|---|
AOD of the lowest aerosol layer | AODL |
Total AOD of all aerosol layers | AODT |
The base height of the lowest aerosol layer | BL |
Top height of the lowest aerosol layer | HL |
Depolarization ratio of the lowest aerosol layer | DRL |
Top height of the highest aerosol layer | HH |
Thickness of the lowest aerosol layer | TL |
Number of aerosol layers | N |
Specific gravity of the lowest aerosol layer AOD | PAODL |
Color ratio of the lowest aerosol layer | CRL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Mu, P.; Chen, X.; Wu, D.; Lu, F.; Qi, P.; Li, L.B.; Gong, W. Study on the Optical–Physical Properties of Aerosol Layers in Africa Based on a Laser Satellite. Atmosphere 2023, 14, 1524. https://doi.org/10.3390/atmos14101524
Zhang M, Mu P, Chen X, Wu D, Lu F, Qi P, Li LB, Gong W. Study on the Optical–Physical Properties of Aerosol Layers in Africa Based on a Laser Satellite. Atmosphere. 2023; 14(10):1524. https://doi.org/10.3390/atmos14101524
Chicago/Turabian StyleZhang, Miao, Pengyu Mu, Xin Chen, Di Wu, Fengxian Lu, Pengcheng Qi, Larry Bailian Li, and Wei Gong. 2023. "Study on the Optical–Physical Properties of Aerosol Layers in Africa Based on a Laser Satellite" Atmosphere 14, no. 10: 1524. https://doi.org/10.3390/atmos14101524
APA StyleZhang, M., Mu, P., Chen, X., Wu, D., Lu, F., Qi, P., Li, L. B., & Gong, W. (2023). Study on the Optical–Physical Properties of Aerosol Layers in Africa Based on a Laser Satellite. Atmosphere, 14(10), 1524. https://doi.org/10.3390/atmos14101524