Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa
Abstract
:1. Introduction
2. Description of the Tonga Volcano Eruption
3. Data
3.1. Sentinel-5P/TROPOMI
3.2. OMI
3.3. OMPS
3.4. CALIPSO
3.5. SAAQIS
4. Results
4.1. SO2 Observations and SO2 Time Series by TROPOMI
4.2. SO2 Observation and Time Series over RSA Using OMI and Ground-Based Monitors
4.3. OMPS SO2 Observation and OMI SO2 Time Series
4.4. Trend Analysis of AOD and Angstrom Parameter
4.5. CALIPSO Volcanic Aerosol Observations
5. Discussion and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Volcanic Eruptions. 2022. Available online: https://www.who.int/health-topics/volcanic-eruptions#tab=tab_3 (accessed on 21 February 2022).
- Vernier, J.P.; Fairlie, T.D.; Deshler, T.; Natarajan, M.; Knepp, T.; Foster, K.; Wienhold, F.G.; Bedka, K.M.; Thomason, L.; Trepte, C. In situ and space-based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere. J. Geophys. Res. Atmos. 2016, 121, 11104–11118. [Google Scholar] [CrossRef]
- Stone, K.A.; Solomon, S.; Kinnison, D.E.; Pitts, M.C.; Poole, L.R.; Mills, M.J.; Schmidt, A.; Neely, R.R., III; Ivy, D.; Schwartz, M.J.; et al. Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015. J. Geophys. Res. Atmos. 2017, 122, 11862–11879. [Google Scholar] [CrossRef]
- Lopes, F.; Silva, J.; Marrero, J.; Taha, G.; Landulfo, E. Synergetic Aerosol Layer Observation After the 2015 Calbuco Volcanic Eruption Event. Remote Sens. 2019, 11, 195. [Google Scholar] [CrossRef]
- Sangeetha, S.K.; Sivakumar, V.; Gebreslasie, M. Long-range transport of SO2 over South Africa: A case study of the Calbuco volcanic eruption in April 2015. Atmos. Environ. 2018, 185, 78–90. [Google Scholar] [CrossRef]
- Shikwambana, L.; Sivakumar, V. Long-range transport of volcanic aerosols over South Africa: A case study of the Calbuco volcanic eruption in Chile during April 2015. S. Afr. Geogr. J. 2018, 100, 349–363. [Google Scholar] [CrossRef]
- Bègue, N.; Shikwambana, L.; Bencherif, H.; Pallotta, J.; Sivakumar, V.; Wolfram, E.; Mbatha, N.; Orte, F.; Du Preez, D.J.; Ranaivombola, M.; et al. Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations. Ann. Geophys. 2020, 38, 395–420. [Google Scholar] [CrossRef]
- Kloss, C.; Berthet, G.; Sellitto, P.; Ploeger, F.; Taha, G.; Tidiga, M.; Eremenko, M.; Bossolasco, A.; Jégou, F.; Renard, J.-B.; et al. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing. Atmos. Chem. Phys. 2021, 21, 535–560. [Google Scholar] [CrossRef]
- Shin, D.; Müller, D.; Lee, K.; Shin, S.; Kim, Y.J.; Song, C.K.; Noh, Y.M. Lidar observations of Nabro volcano aerosol layers in the stratosphere over Gwangju, Korea. Atmos. Chem. Phys. Discuss. 2015, 15, 1171–1191. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Theys, N.; Hedelt, P.; De Smedt, I.; Lerot, C.; Yu, H.; Vlietinck, J.; Pedergnana, M.; Arellano, S.; Galle, B.; Fernandez, D.; et al. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci. Rep. 2019, 9, 2643. [Google Scholar] [CrossRef]
- Koukouli, M.-E.; Michailidis, K.; Hedelt, P.; Taylor, I.A.; Inness, A.; Clarisse, L.; Balis, D.; Efremenko, D.; Loyola, D.; Grainger, R.G.; et al. Volcanic SO2 Layer Height by TROPOMI/S5P; validation against IASI/MetOp and CALIOP/CALIPSO observations. Atmos. Chem. Phys. 2022, 22, 5665–5683. [Google Scholar] [CrossRef]
- Carn, S.; Fioletov, V.; McLinden, C.A.; Li, C.; Krotkov, N.A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, 44095. [Google Scholar] [CrossRef]
- Zerefos, C.S.; Eleftheratos, K.; Kapsomenakis, J.; Solomos, S.; Inness, A.; Balis, D.; Redondas, A.; Eskes, H.; Allaart, M.; Amiridis, V.; et al. Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations. Atmos. Chem. Phys. 2017, 17, 551–574. [Google Scholar] [CrossRef]
- Bourassa, A.E.; Zawada, D.J.; Rieger, L.A.; Warnock, T.W.; Toohey, M.; Degenstein, D.A. Tomographic retrievals of Hunga Tonga-Hunga Ha’apai volcanic aerosol. Geophys. Res. Lett. 2023, 50, e2022GL101978. [Google Scholar] [CrossRef]
- Ge, C.; Wang, J.; Carn, S.; Yang, K.; Ginoux, P.; Krotkov, N. Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012. J. Geophys. Res. Atmos. 2016, 121, 3446–3464. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilger, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 2002, 82, 135–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Tsou, J.Y.; Huang, Z.; Hu, J.; Yim, W. Monitoring of the 2008 Chaitén eruption cloud using MODIS data and its impacts. In Geospatial Technology—Environmental and Social Applications; Imperatore, P., Pepe, A., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Global Volcanism Program. Report on Hunga Tonga-Hunga Ha’apai (Tonga). In Bulletin of the Global Volcanism Network; Smithsonian Institution: Washington, DC, USA, 2022; Volume 40, p. 1. [Google Scholar]
- Xu, J.; Li, D.; Bai, Z.; Tao, M.; Bian, J. Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha’apai Volcano Eruption. Atmosphere 2022, 13, 912. [Google Scholar] [CrossRef]
- Tilstra, L.G.; de Graaf, M.; Wang, P.; Stammes, P. In-orbit Earth reflectance validation of TROPOMI on board the Sentinel-5 Precursor satellite. Atmos. Meas. Tech. 2020, 13, 4479–4497. [Google Scholar] [CrossRef]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.-C.; Eskes, H.J.; Eichmann, K.-U.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- Boersma, K.F.; Bucsela, E.; Brinksma, E.J.; Gleason, J.F. NO2. In OMI Algorithm Theoretical Basis Document, OMI Trace Gas Algorithms, ATBOMI-04, Version 2.0; Chance, K., Ed.; NASA: Washington, DC, USA, 2002; Volume 4, pp. 13–36. Available online: https://ozoneaq.gsfc.nasa.gov/media/docs/ATBD-OMI-04.pdf (accessed on 2 August 2023).
- Bucsela, E.J.; Celarier, E.A.; Wenig, M.O.; Gleason, J.F.; Veefkind, J.P.; Boersma, K.F.; Brinksma, E.J. Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1245–1258. [Google Scholar] [CrossRef]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.J.; Bhartia, K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Stein Zweers, D.C.; Duncan, B.N.; Streets, D.G.; Eskes, H.; van der Ronald, A.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef]
- Flynn, L.E.; Seftor, C.J.; Larsen, J.C.; Xu, P. The ozone mapping and profiler suite. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Yang, K.; Dickerson, R.R.; Carn, S.A.; Ge, C.; Wang, J. First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China. Geophys. Res. Lett. 2013, 40, 4957–4962. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Proceedings of the 3rd International Asia-Pacific Environmental Remote Sensing—Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, 23–27 October 2002; pp. 1–11. [Google Scholar] [CrossRef]
- Winker, D.; Pelon, J.; Coakley, J., Jr.; Ackerman, S.; Charlson, R.; Colarco, P.; Flamant, P.; Fu, Q.; Hoff, R.; Kittaka, C. The CALIPSO mission: A global 3d view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Gwaze, P.; Mashele, S.H. South African Air Quality Information System (SAAQIS) mobile application tool: Bringing real time state of air quality to South Africans. Clean Air J. 2018, 28, 3. [Google Scholar] [CrossRef]
- Pretorius, I.P.; Piketh, S.; Burger, R.; Neomagus, H. A perspective on South African coal fired power station emissions. J. Energy S. Afr. 2015, 26, 27–40. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M.; Mhangara, P. Temporal Analysis of Changes in Anthropogenic Emissions and Urban Heat Islands during COVID-19 Restrictions in Gauteng Province, South Africa. Aerosol Air Qual. Res. 2021, 21, 200437. [Google Scholar] [CrossRef]
- Gorkavyi, N.; Krotkov, N.; Li, C.; Lait, L.; Colarco, P.; Carn, S.; DeLand, M.; Newman, P.; Schoeberl, M.; Taha, G.; et al. Tracking aerosols and SO2 clouds from the Raikoke eruption: 3D view from satellite observations. Atmos. Meas. Tech. 2021, 14, 7545–7563. [Google Scholar] [CrossRef]
- Von Savigny, C.; Timmreck, C.; Buehler, S.A.; Burrows, J.P.; Giorgetta, M.; Hegerl, G.; Horvath, A.; Hoshyaripour, G.A.; Hoose, C.; Quaas, J.; et al. The Research Unit Vol Impact: Revisiting the volcanic impact on atmosphere and climate—Preparations for the next big volcanic eruption. Meteorol. Z. 2020, 29, 3–18. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M. Trends in atmospheric pollutants from oil refinery processes: A case study over the United Arab Emirates. Remote Sens. Lett. 2020, 11, 590–597. [Google Scholar] [CrossRef]
- Vaughan, M.; Young, S.; Winker, D.M.; Powell, K.; Omar, A.; Liu, Z.; Hu, Y.; Hostetler, C. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Tech. Atmos. Sens. 2004, 5575, 16–30. [Google Scholar] [CrossRef]
- Naik, V.; Horowitz, L.W.; Schwarzkopf, D.M.; Lin, M. Impact of volcanic aerosols on stratospheric ozone recovery. J. Geophys. Res. Atmos. 2017, 122, 9515–9528. [Google Scholar] [CrossRef]
- Sellitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bègue, N.; et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ. 2022, 3, 288. [Google Scholar] [CrossRef]
- Li, T.; Gao, Y.; Chen, C.-H.; Zhang, X.; Sun, Y.-Y. Ionospheric disturbances observed over China after 2022 January 15 Tonga volcano eruption. Geophys. J. Int. 2023, 235, 909–919. [Google Scholar] [CrossRef]
- Charlesworth, E.; Plöger, F.; Birner, T.; Baikhadzhaev, R.; Abalos, M.; Abraham, N.L.; Akiyoshi, H.; Bekki, S.; Dennison, F.; Jöckel, P.; et al. Stratospheric water vapor affecting atmospheric circulation. Nat. Commun. 2023, 14, 3925. [Google Scholar] [CrossRef] [PubMed]
- Bègue, N.; Vignelles, D.; Berthet, G.; Portafaix, T.; Payen, G.; Jégou, F.; Benchérif, H.; Jumelet, J.; Vernier, J.-P.; Lurton, T.; et al. Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption. Atmos. Chem. Phys. 2017, 17, 15019–15036. [Google Scholar] [CrossRef]
- Laakso, A.; Korhonen, H.; Romakkaniemi, S.; Kokkola, H. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas. Atmos. Chem. Phys. 2017, 17, 6957–6974. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikwambana, L.; Sivakumar, V.; Xongo, K. Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa. Atmosphere 2023, 14, 1556. https://doi.org/10.3390/atmos14101556
Shikwambana L, Sivakumar V, Xongo K. Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa. Atmosphere. 2023; 14(10):1556. https://doi.org/10.3390/atmos14101556
Chicago/Turabian StyleShikwambana, Lerato, Venkataraman Sivakumar, and Kanya Xongo. 2023. "Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa" Atmosphere 14, no. 10: 1556. https://doi.org/10.3390/atmos14101556
APA StyleShikwambana, L., Sivakumar, V., & Xongo, K. (2023). Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa. Atmosphere, 14(10), 1556. https://doi.org/10.3390/atmos14101556