Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China
Abstract
:1. Introduction
2. Instrumentation and Methods
2.1. Site Description
2.2. Instruments and Measurements
2.3. Flux Data Processing and Usage
2.4. Empirical Model of Respiration (EMRe)
3. Results
3.1. Model Development in a Subtropical Coniferous Forest
3.1.1. Empirical Model of Ecosystem Respiration in Daytime: Re (LR) Method
3.1.2. Empirical Model of Ecosystem Respiration during Nighttime: Re (DR) Method
3.2. Evaluation and Application of the EMRe Models under all sky Conditions during 2013–2016
3.2.1. Nighttime Re Simulations Using Re (DR) Method
3.2.2. Daytime and Nighttime Re Simulations Using Re (DDR) Method
3.2.3. Daytime and Nighttime Re Simulations Using Re (LDR) Method
3.2.4. Daytime and Nighttime Re Simulations Using Re (LDDR) Method
3.3. NEP Simulations under All Sky Conditions during 2013–2016
3.3.1. GPP Simulations Using EMGPP Model
3.3.2. NEP Simulations Using EMGPP and Re (DDR) Models
3.3.3. NEP Simulations Using EMGPP and Re (LDR) Models
3.3.4. NEP Simulations Using EMGPP and Re (LDDR) Models
4. Discussion
4.1. PAR Balance Principle
4.2. The Application of Re (DR) Model and Calibration of Longwave Radiation Sensor
4.3. EMNEP Model and Its Simulation
4.4. GPP, Re, and NEP Empirical Models
4.5. Some Issues Related to the Empirical Models of GPP, Re and NEP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; King, J.C.; Mulvaney, R. Climate Change: Devil in the Detail. Science 2001, 293, 1777–1779. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; King, J.C.; Pudsey, C.J.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.A.; Dethloff, K.; Entekhabi, D.; Overland, J.E.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef]
- Bai, J.H.; Zong, X.M.; Ma, Y.M.; Wang, B.B.; Zhao, C.F.; Yang, Y.K.; Guang, J.; Cong, Z.Y.; Li, K.L.; Song, T. Long-term variations in global solar radiation and its interaction with atmospheric substances at Qomolangma. Int. J. Environ. Res. Public Health 2022, 19, 8906. [Google Scholar] [CrossRef]
- Zavalishin, N.N. Reasons for Modern Warming: Hypotheses and Facts. J. Atmos. Sci. Res. 2022, 5, 11–17. [Google Scholar]
- Chinese Academy of Meteorological Sciences. Annual Report on Polar Climate Change; Meteorology Press: Beijing, China, 2023. [Google Scholar]
- Ahmed, M.; Khan, A.M.; Bibi, S.; Zakaria, M. Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis. Renew. Sustain. Energy Rev. 2017, 75, 86–97. [Google Scholar] [CrossRef]
- Stocker, T. IPCC 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X.S. On the causal structure between CO2 and global temperature. Sci. Rep. 2016, 6, 21691. [Google Scholar] [CrossRef]
- Gurney, K.; Law, R.; Denning, A.; Rayner, P.J.; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, Y.-H.; Ciais, P.; Fan, S.; et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 2002, 415, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Mariotti, A.; Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Glob. Biogeochem. Cycles 2005, 19, Gb1016. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; Von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef]
- Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S.D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S.C.; Graven, H.; Heinze, C.; Huntingford, C.; et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 2015, 12, 653–679. [Google Scholar] [CrossRef]
- Wang, K.; Piao, S.; He, Y.; Liu, Y.; He, H. Spatial variations and mechanisms for the stability of terrestrial carbon sink in China. Sci. China Earth Sci. 2023, 66, 227–236. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, GB1015. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Friedlingstein, P.; Sitch, S.; Anthoni, P.; Arneth, A.; Arora, V.K.; Bastrikov, V.; Delire, C.; Goll, D.S.; Jain, A.; et al. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat. Commun. 2022, 13, 4781. [Google Scholar] [CrossRef]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational constraints on the global atmospheric CO2 budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef]
- Denning, A.S.; Randall, D.A.; Collatz, G.J.; Sellers, P.J. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Tellus B 1996, 48, 543–567. [Google Scholar] [CrossRef]
- Nagy, L.; Bruce, R.F.; Paulo, A. (Eds.) Climate and the Amazonian Carbon Balance. In Interactions Between Biosphere, Atmosphere, and Human Land Use in the Amazon Basin: An Introduction; Ecological Studies; Springer Nature: Berlin/Heidelberg, Germany, 2016; Volume 227. [Google Scholar] [CrossRef]
- Wosfy, S.C.; Goulden, M.L.; Munger, J.W.; Fan, S.M.; Bakwin, P.S.; Daube, B.C.; Bassow, S.L.; Bazzaz, F.A. Net exchange of CO2 in a mid-latitude forest. Science 1993, 260, 1314–1317. [Google Scholar]
- Baldocchi, D.D. TURNER REVIEW No. 15.’Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008, 56, 1–26. [Google Scholar] [CrossRef]
- Granier, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Schmid, H.P.; Grimmond, C.S.; Cropley, F.; Offerle, B.; Su, H.B. Measurenments of CO2 and energy fluxes over a mixed hardwood forest in the mid-n United States. Agric. For. Meteorol. 2000, 103, 357–374. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Loescher, H.W.; Law, B.E.; Mahrt, L.; Hollinger, D.Y.; Campbell, J.; Wofsy, S.C. Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J. Geophys. Res. 2006, 111, D21S90. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Dong, Y.X.; Yang, M.X.; Bakker, D.C.E.; Kitidis, V.; Bell, T.G. Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations. Atmos. Chem. Phys. 2021, 21, 8089–8110. [Google Scholar] [CrossRef]
- Robinson, J.M.; O’Neill, T.A.; Ryburn, J.; Liang, L.L.; Arcus, V.L.; Schipper, L.A. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 2017, 133, 101–112. [Google Scholar] [CrossRef]
- Keenan, T.F.; Migliavacca, M.; Papale, D.; Baldocchi, D.; Reichstein, M.; Torn, M.; Wutzler, T. Widespread inhibition of daytime ecosystem respiration. Nat. Ecol. Evol. 2019, 3, 407–415. [Google Scholar] [CrossRef]
- Sharkey, T.D. Estimating the rate of photorespiration in leaves. Physiol. Plantarum 1988, 73, 147–152. [Google Scholar] [CrossRef]
- Peterhansel, C.; Horst, I.; Niessen, M.; Blume, C.; Kebeish, R.; Kürkcüoglu, S.; Kreuzaler, F. Photorespiration. Arab. Book 2010, 8, e0130. [Google Scholar] [CrossRef]
- Remaud, M.; Chevallier, F.; Maignan, F.; Belviso, S.; Berchet, A.; Parouffe, A.; Abadie, C.; Bacour, C.; Lennartz, S.; Peylin, P. Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling. Atmos. Chem. Phys. 2022, 22, 2525–2552. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant Carbon Metabolism and Climate Change: Elevated CO2 and Temperature Impacts on Photosynthesis, Photorespiration and Respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Bo, Y.; Bao, Y.; Zhu, X.; Wang, J.; Wang, Y. A Machine Learning Model for Photorespiration Response to Multi-Factors. Horticulturae 2021, 7, 207. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Cao, M.K.; Prince, S.D.; Li, K.R.; Tao, B.; Small, J.; Shao, X.M. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Chang. Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Yu, G.R.; Chen, Z.; Piao, S.L.; Peng, C.H.; Ciais, P.; Wang, Q.F.; Li, X.R.; Zhu, X.J. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Wang, K.; Li, X.; Bastos, A.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Sitch, S. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 2020, 26, 300–318. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Bai, J.H.; Yang, F.T.; Wang, H.M.; Xu, M.J. An empirical model of gross primary productivity (GPP) and relations between GPP and its driving factors, biogenic volatile organic compounds in a subtropical coniferous plantation in China. Atmosphere 2023, 14, 1046. [Google Scholar] [CrossRef]
- Yu, G.R.; Wen, X.F.; Li, Q.K.; Zhang, L.M.; Ren, C.Y.; Liu, Y.F.; Guan, D.X. Seasonal patterns and environmental control of ecosystem respiration in subtropical and temperate forests in China. Sci. China Ser. D 2004, 34, 84–94. (In Chinese) [Google Scholar]
- Bai, J.H.; Guenther, A.; Turnipseed, A.; Duhl, T.; Greenberg, J. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China. Atmos. Environ. 2017, 161, 176–190. [Google Scholar] [CrossRef]
- Liu, Y.F.; Song, X.; Yu, G.R.; Sun, S.M.; Wen, X.F.; Chrn, Y.R. Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sci. China Ser. D. Earth Sci. 2005, 48 (Suppl. 1), 123–132. [Google Scholar] [CrossRef]
- Yu, G.R.; Wen, X.F.; Sun, X.M.; Tanner, B.D.; Lee, X.; Chen, J.Y. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water-vapor transfer. Q. J. R. Meteor. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 2000, 30, 113–175. [Google Scholar]
- Michaelis, L.; Menten, M.L. Die kinetik der invertinwirkung. Biochemistry 1913, 49, 333–369. [Google Scholar]
- Falge, E.; Baldocchia, D.; Olsonb, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef]
- Xu, M.J.; Wang, H.M.; Wen, X.F.; Zhang, T.; Di, Y.B.; Wang, Y.D.; Wang, J.L.; Cheng, C.P.; Zhang, W.J. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation. Sci. Rep. 2017, 1, 10025. [Google Scholar] [CrossRef]
- Bai, J.H.; Duhl, T. A primary generalized empirical model of BVOC emissions for some typical forests in China. Atmos. Pollut. Res. 2021, 12, 101126. [Google Scholar] [CrossRef]
- Harley, P.C.; Thomas, R.B.; Reynolds, J.F.; Strain, B.R. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. 1992, 15, 271–282. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Glob. Chang. Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef]
- Kang, H.Q.; Tao, Y.L.; Wang, W.; Ouyang, Z. Fitting mitochondrial respiration rates under light by photosynthetic CO2 response. Models 2014, 38, 1356–1363. [Google Scholar]
- Liu, Y.F.; Yu, G.R.; Wen, X.F.; Wang, Y.H.; Song, X.; Li, J.; Sun, S.M.; Yang, F.T.; Chen, Y.R.; Liu, Q.J. Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sci. China Ser. D. Earth Sci. 2006, 49 (Suppl. 2), 99–109. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.Y.; Xu, M.J.; Zhao, G.; Chen, N.; Zheng, Z.T.; Zhu, J.T.; Ji, X.M.; Wang, D.F.; Zhang, Y.J.; et al. Joint control of alpine meadow productivity by plant phenology and photosynthetic capacity. Agric. For. Meteorol. 2022, 325, 109135. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Tenhunen, J.; Aubinet, M.; Bakwin, P.; Berbigier, P.; Bernhofer, C.; Burba, G.; Clement, R.; Davis, K.J.; et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. For. Meteorol. 2002, 113, 53–74. [Google Scholar] [CrossRef]
- Suyker, A.E.; Verma, S.B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob. Chang. Biol. 2001, 7, 279–289. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric. For. Meteorol. 2004, 123, 79–96. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.Y.; Shao, C.L. Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agric. For. Meteorol. 2021, 296, 108227. [Google Scholar] [CrossRef]
- Houweling, S.; Dentener, F.; Lelieveld, J. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 1998, 103, 10673–10696. [Google Scholar] [CrossRef]
- Griffin, R.J.; Cocker, D.R., III; Flagan, R.C.; Seinfeld, J.H. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 1999, 104, 3555–3567. [Google Scholar] [CrossRef]
- Poisson, N.; Kanakidou, M.; Crutzen, P.J. Impact of nonmethane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modeling results. J. Atmos. Chem. 2000, 36, 157–230. [Google Scholar] [CrossRef]
- Collins, W.J.; Derwent, R.G.; Johnson, C.E.; Stevenson, D.S. The oxidation of organic compounds in the troposphere and their global warming potentials. Clim. Chang. 2002, 52, 28. [Google Scholar] [CrossRef]
- Guenther, A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 2002, 49, 837–844. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- Greenberg, J.P.; Guenther, A.; Harley, P.; Otter, L.; Veenendaal, E.M.; Hewitt, C.N.; James, A.E.; Owen, S.M. Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana. J. Geophys. Res. 2003, 108, 8466. [Google Scholar] [CrossRef]
- Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M.O.; Artaxo, P.; et al. Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173–1176. [Google Scholar] [CrossRef]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Flagan, R.C.; Seinfeld, J.H. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys. Res. Lett. 2005, 32, L18808. [Google Scholar] [CrossRef]
- Duhl, T.R.; Helmig, D.; Guenther, A. Sesquiterpene emissions from vegetation: A review. Biogeosciences 2008, 5, 761–777. [Google Scholar] [CrossRef]
- Wright, T.P.; Hader, J.D.; McMeeking, G.R.; Petters, M.D. High relative humidity as a trigger for widespread release of ice nuclei. Aerosol Sci. Technol. 2014, 48, i–v. [Google Scholar] [CrossRef]
- Bai, J.H.; Heikkilä, A.; Zong, X.M. Long-Term Variations of Global Solar Radiation and Atmospheric Constituents at Sodankylä in the Arctic. Atmosphere 2021, 12, 749. [Google Scholar] [CrossRef]
- Bai, J.H. A calibration method of solar radiometers. Atmos. Pollut. Res. 2019, 10, 1365–1373. [Google Scholar] [CrossRef]
- Wang, X.S.; Xu, J.; Liu, F.; Gao, S.J. Spatial-temporal changes of land surface emissivity in China from 2001 to 2010. Acta Geogr. Sin. 2012, 67, 93–100. [Google Scholar]
- Liu, M.Q.; Zheng, X.D.; Zhao, C.S. Onservational analysis of summer atmospheric download longwave radiation at 4 sites on the Tibetan Plateau. J. Appl. Meteor. Sci. 2018, 29, 596–608. [Google Scholar]
- Staley, D.; Jurica, G. Effective atmospheric emissivity under clear skies. J. Appl. Meteor. 1972, 11, 349–356. [Google Scholar] [CrossRef]
- Cohan, D.S.; Xu, J.; Greenwald, R.; Bergin, M.H.; Chameides, W.L. Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity. Glob. Biogeochem. Cycles 2002, 16, 1090. [Google Scholar] [CrossRef]
- Knohl, A.; Baldocchi, D.D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res. 2008, 113, G02023. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 2018, 9, 5413. [Google Scholar] [CrossRef] [PubMed]
- Lowe, P.R. An approximating polynomial for computation of saturation vapor pressure. J. Appl. Meteorol. 1977, 16, 100–103. [Google Scholar] [CrossRef]
- Bai, J.H.; Zong, X.M. Global solar radiation transfer and its loss in the atmosphere. Appl. Sci. 2021, 11, 2651. [Google Scholar] [CrossRef]
- Liu, M.; He, H.L.; Yu, G.Y.; Sun, X.-M.; Zhu, X.-D.; Zhang, L.; Zhao, X.-Q.; Wang, H.-M.; Shi, P.-L.; Han, S.-J. Impacts of uncertainty in data processing on estimation of CO2 flux components. Chin. J. Appl. Ecol. 2010, 21, 2389–2396. [Google Scholar]
- Li, S.P.; Matthews, J.; Sinha, A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 2008, 319, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.H.; Duhl, T.; Hao, N. Biogenic volatile compound emissions from a temperate forest, China: Model simulation. J. Atmos. Chem. 2016, 73, 29–59. [Google Scholar] [CrossRef]
- Gu, L.H.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. 2002, 107, ACL 2-1–ACL 2-23. [Google Scholar] [CrossRef]
- Rocha, A.V.; Su, H.B.; Vogel, C.S.; Schmid, H.P.; Curtis, P.S. Photosynthetic and water use efficiency responses to diffuse radiation by an aspen-dominated northern hardwood forest. For. Sci. 2004, 50, 793–801. [Google Scholar]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Beringer, J.; Hutley, L. Exploring the link between clouds, radiation, and canopy productivity of tropical savannas. Agr. For. Meteorol. 2023, 182, 304–313. [Google Scholar] [CrossRef]
- Cirino, G.G.; Souza, R.A.F.; Adams, D.K.; Artaxo, P. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 2014, 14, 6523–6543. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Chen, M.; Xu, X.; Wang, Z.; Wang, B.; Wang, C.; Piao, S.; Lin, W.; Miao, G.; et al. Field evidences for the positive effects of aerosols on tree growth. Glob. Chang. Biol. 2018, 24, 4983–4992. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, X.; Ju, W.; Zhang, L.; Chen, Z.; He, W.; Liu, Y.; Shen, Y. Modeling the effects of global and diffuse radiation on terrestrial gross primary productivity in china based on a two-leaf light use efficiency model. Remote Sens. 2020, 12, 3355. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Lei, Y.; Zhang, T.; Tian, C.; Ma, Y.; Cao, Y. Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmos. Environ. 2021, 244, 117905. [Google Scholar] [CrossRef]
- Bouvier-Brown, N.C.; Schade, G.W.; Misson, L.; Lee, A.; McKay, M.; Goldstein, A.H. A Contributions of biogenic volatile organic compounds to net ecosystem carbon flux in a ponderosa pine plantation. Atmos. Environ. 2012, 60, 527–533. [Google Scholar] [CrossRef]
- Yang, J.M.; Qiu, J.H. A method for estimating perceptible water and effective water vapor content from ground humidity parameters. Chin. J. Atmos. Sci. 2002, 26, 9–22. [Google Scholar]
- Kesselmeier, J.; Ciccioli, P.; Kuhn, U.; Stefani, P.; Biesenthal, T.; Rottenberger, S.; Wolf, A.; Vitullo, M.; Valentini, R.; Nobre, A.; et al. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob. Biogeochem. Cycles 2002, 16, 73-1–73-9. [Google Scholar] [CrossRef]
Model | B1 | B2 | B3 | B0 | R2 | δavg | NMSE | cal/obs | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | |||||||||||
3-F | 0.026 | 1.036 | 0.000 | 0.057 | 0.999 | 24.31 | 0.085 | 1.001 | 0.07 | 0.02 | 0.05 | 24.04 | 0.06 | 29.37 |
2-F | 0.026 | 1.036 | 0.057 | 0.999 | 24.31 | 0.085 | 1.001 | 0.07 | 0.02 | 0.05 | 24.04 | 0.06 | 29.37 |
Model | B1 | B2 | B3 | B0 | R2 | δavg | NMSE | cal/obs | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | |||||||||||
3-F | 0.016 | 1.185 | −0.112 | 0.093 | 0.994 | 68.45 | 0.582 | 1.009 | 0.17 | 0.04 | 0.12 | 63.41 | 0.14 | 76.72 |
2-F | 0.008 | 1.234 | 0.039 | 0.994 | 72.46 | 0.638 | 1.010 | 0.18 | 0.04 | 0.12 | 66.35 | 0.15 | 80.30 |
Data | C1 | C0 | R2 | δavg | NMSE | cal/obs | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | |||||||||
2013 | 0.153 | −1.133 | 0.589 | 26.05 | 0.112 | 0.937 | 0.06 | 0.08 | 0.03 | 18.46 | 0.05 | 32.41 |
2014 | 0.175 | −1.150 | 0.606 | 32.68 | 0.141 | 1.002 | 0.06 | 0.08 | 0.03 | 19.81 | 0.05 | 37.59 |
Data | C1 | C0 | R2 | δavg | NMSE | cal/obs | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | |||||||||
2014 | 0.175 | −1.150 | 0.606 | 32.68 | 0.141 | 1.001 | 0.06 | 0.08 | 0.03 | 19.34 | 0.05 | 33.96 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 27.24 | 0.121 | 0.064 | 0.074 | 0.92 | 2752 | 0.031 | 18.80 | 0.054 | 33.27 |
2014 | 44.76 | 0.148 | 0.065 | 0.083 | 1.01 | 4576 | 0.028 | 20.71 | 0.052 | 38.67 |
2015 | 44.40 | 0.110 | 0.057 | 0.070 | 0.93 | 4673 | 0.028 | 18.49 | 0.049 | 31.98 |
2016 | 43.46 | 0.227 | 0.060 | 0.095 | 0.81 | 4835 | 0.048 | 27.26 | 0.076 | 42.89 |
2013–2016 | 41.42 | 0.159 | 0.061 | 0.083 | 0.91 | 16,836 | 0.034 | 21.91 | 0.060 | 37.98 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 15.35 | 0.029 | 0.656 | 0.553 | 0.92 | 224 | 0.248 | 12.34 | 0.329 | 16.37 |
2014 | 19.50 | 0.036 | 0.688 | 0.751 | 1.01 | 365 | 0.242 | 14.31 | 0.321 | 18.96 |
2015 | 12.14 | 0.024 | 0.602 | 0.582 | 0.93 | 365 | 0.210 | 10.73 | 0.290 | 14.78 |
2016 | 20.34 | 0.078 | 0.677 | 0.814 | 0.81 | 366 | 0.463 | 19.82 | 0.588 | 25.16 |
2013–2016 | 16.99 | 0.046 | 0.658 | 0.737 | 0.91 | 1320 | 0.296 | 14.79 | 0.407 | 20.36 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 11.69 | 0.013 | 45.22 | 41.61 | 0.92 | 7 | 5.517 | 9.02 | 7.041 | 11.51 |
2014 | 11.23 | 0.010 | 30.31 | 47.42 | 1.03 | 12 | 4.506 | 8.75 | 5.433 | 10.55 |
2015 | 7.75 | 0.008 | 41.05 | 41.06 | 0.93 | 12 | 4.244 | 7.12 | 5.221 | 8.76 |
2016 | 18.99 | 0.056 | 40.83 | 51.73 | 0.79 | 12 | 13.626 | 19.11 | 15.780 | 22.13 |
2013–2016 | 12.50 | 0.025 | 18.28 | 21.07 | 0.91 | 53 | 7.143 | 11.74 | 9.337 | 15.34 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 15.96 | 0.054 | 0.062 | 0.063 | 0.93 | 5376 | 0.021 | 12.46 | 0.038 | 22.35 |
2014 | 21.49 | 0.070 | 0.066 | 0.075 | 1.03 | 8755 | 0.022 | 15.32 | 0.039 | 26.90 |
2015 | 14.75 | 0.050 | 0.059 | 0.062 | 0.93 | 8753 | 0.020 | 12.24 | 0.035 | 31.52 |
2016 | 24.08 | 0.144 | 0.059 | 0.083 | 0.79 | 8722 | 0.044 | 23.25 | 0.064 | 33.73 |
2013–2016 | 19.40 | 0.159 | 0.062 | 0.074 | 0.91 | 31,606 | 0.027 | 16.46 | 0.046 | 27.71 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 12.57 | 0.015 | 1.470 | 1.309 | 0.93 | 224 | 0.381 | 9.25 | 0.619 | 15.01 |
2014 | 15.71 | 0.018 | 1.570 | 1.555 | 1.03 | 365 | 0.369 | 10.74 | 0.608 | 17.72 |
2015 | 11.15 | 0.015 | 1.394 | 1.339 | 0.93 | 365 | 0.359 | 9.16 | 0.600 | 15.31 |
2016 | 21.99 | 0.077 | 1.398 | 1.681 | 0.79 | 366 | 0.945 | 21.03 | 0.974 | 21.66 |
2013–2016 | 15.66 | 0.035 | 1456 | 1.570 | 0.91 | 1320 | 0.528 | 13.27 | 0.708 | 17.70 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 10.64 | 0.009 | 45.22 | 41.61 | 0.92 | 7 | 9.952 | 7.95 | 7.041 | 11.51 |
2014 | 10.44 | 0.009 | 30.31 | 47.42 | 1.03 | 12 | 8.096 | 7.76 | 5.433 | 10.55 |
2015 | 8.06 | 0.007 | 41.05 | 41.06 | 0.93 | 12 | 8.419 | 7.06 | 5.221 | 8.76 |
2016 | 20.68 | 0.066 | 40.83 | 51.73 | 0.79 | 12 | 28.303 | 20.64 | 32.733 | 23.88 |
2013–2016 | 12.67 | 0.026 | 42.02 | 47.09 | 0.91 | 53 | 14.13 | 11.67 | 17.156 | 14.17 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 103.31 | 1.555 | 0.214 | 0.072 | 0.90 | 13,893 | 0.111 | 72.37 | 0.182 | 118.44 |
2015 | 77.37 | 1.165 | 0.202 | 0.062 | 0.97 | 8754 | 0.110 | 67.33 | 0.174 | 106.38 |
2016 | 78.60 | 1.401 | 0.208 | 0.083 | 0.73 | 8724 | 0.121 | 64.07 | 0.191 | 101.11 |
2013–2016 | 88.91 | 1.375 | 0.209 | 0.074 | 0.87 | 31,611 | 0.113 | 68.19 | 0.182 | 109.40 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 104.24 | 1.530 | 0.210 | 0.072 | 0.86 | 13,893 | 0.106 | 69.30 | 0.176 | 114.70 |
2015 | 76.57 | 1.083 | 0.194 | 0.062 | 0.91 | 8754 | 0.103 | 63.09 | 0.162 | 99.32 |
2016 | 77.31 | 1.300 | 0.200 | 0.083 | 0.69 | 8724 | 0.112 | 59.17 | 0.179 | 94.93 |
2013–2016 | 88.65 | 1.309 | 0.202 | 0.074 | 0.83 | 31,611 | 0.107 | 64.17 | 0.173 | 103.93 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 112.13 | 1.586 | 0.256 | 0.072 | 1.40 | 13,891 | 0.144 | 93.82 | 0.223 | 149.16 |
2015 | 87.19 | 1.429 | 0.252 | 0.062 | 1.41 | 8753 | 0.141 | 86.01 | 0.232 | 141.95 |
2016 | 81.58 | 1.199 | 0.243 | 0.083 | 1.08 | 8722 | 0.137 | 72.86 | 0.214 | 113.53 |
2013–2016 | 96.61 | 1.414 | 0.251 | 0.074 | 1.31 | 31,606 | 0.141 | 85.06 | 0.226 | 135.86 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 112.52 | 1.516 | 0.251 | 0.072 | 1.36 | 13,891 | 0.141 | 91.67 | 0.220 | 143.75 |
2015 | 86.10 | 1320 | 0.244 | 0.062 | 1.35 | 8753 | 0.136 | 83.33 | 0.218 | 133.48 |
2016 | 81.26 | 1.117 | 0.237 | 0.083 | 1.04 | 8722 | 0.134 | 70.87 | 0.204 | 107.93 |
2013–2016 | 96.46 | 1.333 | 0.245 | 0.074 | 1.26 | 31,606 | 0.138 | 82.92 | 0.216 | 129.77 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 117.15 | 0.490 | 0.374 | 0.291 | 1.15 | 2493 | 0.287 | 59.43 | 0.535 | 111.05 |
2014 | 148.47 | 0.612 | 0.392 | 0.295 | 1.37 | 4181 | 0.301 | 71.90 | 0.549 | 130.99 |
2013–2016 | 142.74 | 0.586 | 0.381 | 0.300 | 1.31 | 14,748 | 0.318 | 70.03 | 0.398 | 87.60 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013 | 112.71 | 0.496 | 0.369 | 0.291 | 1.17 | 2493 | 0.281 | 58.31 | 0.530 | 110.00 |
2014 | 140.95 | 0.557 | 0.376 | 0.295 | 1.34 | 4181 | 0.289 | 69.00 | 0.536 | 127.94 |
2013–2016 | 135.55 | 0.538 | 0.366 | 0.300 | 1.29 | 14,748 | 0.303 | 66.62 | 0.378 | 83.23 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 755.05 | 9.008 | 0.245 | 0.293 | 0.93 | 13,894 | 0.108 | 174.46 | 0.178 | 288.95 |
2015 | 352.87 | 10.944 | 0.248 | 0.288 | 1.37 | 8760 | 0.106 | 238.23 | 0.173 | 387.05 |
2016 | 244.45 | 18.583 | 0.262 | 0.316 | 1.96 | 8777 | 0.131 | 392.98 | 0.202 | 604.30 |
2013–2016 | 497.35 | 11.281 | 0.251 | 0.299 | 1.22 | 31,671 | 0.114 | 230.34 | 0.183 | 371.58 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 778.04 | 8.889 | 0.250 | 0.293 | 0.99 | 13,894 | 0.109 | 176.10 | 0.183 | 296.89 |
2015 | 361.45 | 10.906 | 0.251 | 0.288 | 1.41 | 8760 | 0.108 | 241.62 | 0.175 | 391.68 |
2016 | 246.72 | 19.059 | 0.263 | 0.316 | 1.97 | 8777 | 0.133 | 397.46 | 0.204 | 612.15 |
2013–2016 | 510.26 | 11.277 | 0.254 | 0.299 | 1.27 | 31,671 | 0.115 | 232.88 | 0.187 | 378.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Yang, F.; Xu, M.; Wang, H. Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China. Atmosphere 2023, 14, 1557. https://doi.org/10.3390/atmos14101557
Bai J, Yang F, Xu M, Wang H. Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China. Atmosphere. 2023; 14(10):1557. https://doi.org/10.3390/atmos14101557
Chicago/Turabian StyleBai, Jianhui, Fengting Yang, Mingjie Xu, and Huimin Wang. 2023. "Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China" Atmosphere 14, no. 10: 1557. https://doi.org/10.3390/atmos14101557
APA StyleBai, J., Yang, F., Xu, M., & Wang, H. (2023). Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China. Atmosphere, 14(10), 1557. https://doi.org/10.3390/atmos14101557