Effect of Surface Methane Controls on Ozone Concentration and Rice Yield in Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Emission and Meteorological Data
2.3. Observation Dataset
2.4. Rice Yield and Production Losses Based on Ozone Exposure Metrics
3. Results and Discussion
3.1. Reproduction Accuracy of Simulated Surface Ozone Concentration
3.2. Surface Methane and Ozone Distributions
3.3. Distributions of Surface Accumulated Ozone Exposure
3.4. Relative Rice Yields and Production Losses
3.5. Uncertainty from Impacts of Methane Emissions
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.; Zhu, J. Sensitivity analysis of greenhouse gas emissions at farm level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef] [PubMed]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef] [PubMed]
- Global Monitoring Laboratory. Trends in Atmospheric Methane. 2022. Available online: https://gml.noaa.gov/ccgg/trends_CH4/ (accessed on 25 June 2022).
- Climate and Clean Air Coalition (CCAC); United Nations Environment Programme (UNEP). Global Methane Assessment. 2021. Available online: https://www.ccacoalition.org/en/resources/global-methane-assessment-full-report (accessed on 12 May 2022).
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Höglund-Isaksson, L.; Gómez-Sanabria, A.; Klimont, Z.; Rafaj, P.; Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environ. Res. Commun. 2020, 2, 025004. [Google Scholar] [CrossRef]
- Van Dingenen, R.; Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Dentener, F. Global Trends of Methane Emissions and Their Impacts on Ozone Concentrations; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-96550-0. [Google Scholar]
- Liu, X.; Desai, A.R. Significant reductions in crop yields from air pollution and heat stress in the United States. Earth’s Future 2021, 9, e2021EF002000. [Google Scholar] [CrossRef]
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 2011, 45, 2284–2296. [Google Scholar] [CrossRef]
- Shindell, D.T.; Fuglestvedt, J.S.; Collins, W.J. The social cost of methane: Theory and applications. Faraday Discuss. 2017, 200, 429–451. [Google Scholar] [CrossRef]
- Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Frei, M.; Burkey, K.; Emberson, L.; Uddling, J.; Broberg, M.; Feng, Z.; et al. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Glob. Change Biol. 2018, 24, 4869–4893. [Google Scholar] [CrossRef]
- United Nations Environment Programme; Climate and Clean Air Coalition. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021; ISBN 978-92-807-3854-4. [Google Scholar]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. 2001, 106, 23073–23095. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). WMO Greenhouse Gas Bulletin—The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2010; WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Fiore, A.M.; Jacob, D.J.; Field, B.D. Linking ozone pollution and climate change: The case for controlling methane. Geophys. Res. Lett. 2002, 29, 1919. [Google Scholar] [CrossRef]
- Duncan Fairlie, T.; Jacob, D.J.; Park, R.J. The impact of transpacific transport of mineral dust in the United States. Atmos. Environ. 2007, 41, 1251–1266. [Google Scholar] [CrossRef]
- Jaeglé, L.; Quinn, P.K.; Bates, T.S.; Alexander, B.; Lin, J.-T. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137–3157. [Google Scholar] [CrossRef]
- Hudman, R.C.; Moore, N.E.; Mebust, A.K.; Martin, R.V.; Russell, A.R.; Valin, L.C.; Cohen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space based-constraints. Atmos. Chem. Phys. 2012, 12, 7779–7795. [Google Scholar] [CrossRef]
- Murray, L.T.; Jacob, D.J.; Logan, J.A.; Hudman, R.C.; Koshak, W.J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res. 2012, 117, D20307. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Prather, M.; Ehhalt, D.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; et al. Atmospheric chemistry and greenhouse gases. In Climate Change 2001; Houghton, J.T., Ed.; Cambridge University Press: Cambridge, UK, 2001; pp. 241–279. [Google Scholar]
- Prather, M.J. Time scales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth. Geophys. Res. Lett. 1996, 23, 2597–2600. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- FAO. GAEZ v4 Data Portal. 2021. Available online: https://gaez.fao.org/pages/data-access-download (accessed on 11 March 2022).
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Monitoring Atmospheric Composition & Climate (MACC). Global Reanalysis of Assimilated Gridded O3 Data at the Surface. Copernicus Atmosphere Monitoring Service. Available online: https://atmosphere.copernicus.eu/catalogue#/ (accessed on 18 March 2023).
- Tai, A.P.K.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 2014, 4, 817–821. [Google Scholar] [CrossRef]
- Emberson, L.D.; Büker, P.; Ashmore, M.R.; Mills, G.; Jackson, L.S.; Agrawal, M.; Atikuzzaman, M.D.; Cinderby, S.; Engardt, M.; Jamir, C.; et al. A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos. Environ. 2009, 43, 1945–1953. [Google Scholar] [CrossRef]
- Tatsumi, K. Rice yield reductions due to ozone exposure and the roles of VOCs and NOx in ozone production in Japan. J. Agric. Meteorol. 2022, 78, 89–100. [Google Scholar] [CrossRef]
- Wang, X.; Mauzerall, D.L. Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 2004, 38, 4383–4402. [Google Scholar] [CrossRef]
- Van Dingenen, R.; Dentener, F.J.; Raes, F.; Krol, M.C.; Emberson, L.; Cofala, J. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 2009, 43, 604–618. [Google Scholar] [CrossRef]
- Schiferl, L.D.; Heald, C.L. Particulate matter air pollution may offset ozone damage to global crop production. Atmos. Chem. Phys. 2018, 18, 5953–5966. [Google Scholar] [CrossRef]
- Li, J.; Nagashima, T.; Kong, L.; Ge, B.; Yamaji, K.; Fu, J.S.; Wang, X.; Fan, Q.; Itahashi, S.; Lee, H.-J.; et al. Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III—Part 1: Overview. ACP 2019, 19, 12993–13015. [Google Scholar] [CrossRef]
- Yan, J.; Wang, G.; Yang, P.; Li, D.; Bian, J. Influence of NOx, Cl, and Br on the upper core of the ozone valley over the Tibetan Plateau during summer: Simulations with a box model. Sci. Total Environ. 2022, 817, 152776. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, W.; Zhou, X.; He, J. Mechanism of formation of the ozone valley over the Tibetan Plateau in summer—Transport and chemical process of ozone. Adv. Atmos. Sci. 2003, 20, 103–109. [Google Scholar] [CrossRef]
- Han, Z.; Sakurai, T.; Ueda, H.; Carmichael, G.R.; Streets, D.; Hayami, H.; Wang, Z.; Holloway, T.; Engardt, M.; Hozumi, Y.; et al. MICS-ASIA II: Model intercomparison and evaluation of ozone and relevant species. Atmos. Environ. 2008, 42, 3491–3509. [Google Scholar] [CrossRef]
- Nussbaumer, C.M.; Crowley, J.N.; Schuladen, J.; Williams, J.; Hafermann, S.; Reiffs, A.; Axinte, R.; Harder, H.; Ernest, C.; Novelli, A.; et al. Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe. Atmos. Chem. Phys. 2021, 21, 18413–18432. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, W.; Crippa, M.; Peng, S.; Han, P.; Zeng, N.; Yu, L.; Wang, G. A Comparative Study of Anthropogenic CH4 Emissions over China Based on the Ensembles of Bottom-Up Inventories. Earth Syst. Sci. Data 2021, 13, 1073–1088. [Google Scholar] [CrossRef]
- Liu, N.; Lin, W.; Ma, J.; Xu, W.; Xu, X. Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. J. Environ. Sci. 2019, 77, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Kunchala, R.K.; Singh, B.B.; Karumuri, R.K.; Attada, R.; Seelanki, V.; Kumar, K.N. Understanding the spatiotemporal variability and trends of surface ozone over India. Environ. Sci. Pollut. Res. 2022, 29, 6219–6236. [Google Scholar] [CrossRef]
- Deb Roy, S.; Beig, G.; Ghude, S.D. Exposure-plant response of ambient ozone over the tropical Indian region. Atmos. Chem. Phys. 2009, 9, 5253–5260. [Google Scholar] [CrossRef]
- Feng, Z.; Kobayashi, K.; Li, P.; Xu, Y.; Tang, H.; Guo, A.; Paoletti, E.; Calatayud, V. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering. Atmos. Environ. 2019, 217, 116945. [Google Scholar] [CrossRef]
- Marco, A.D.; Anav, A.; Sicard, P.; Feng, Z.; Paoletti, E. High spatial resolution ozone risk-assessment for Asian forests. Environ. Res. Lett. 2020, 15, 104095. [Google Scholar] [CrossRef]
- Sharma, A.; Ojha, N.; Pozzer, A.; Beig, G.; Gunthe, S.S. Revisiting the crop yield loss in India attributable to ozone. Atmos. Environ. X 2019, 1, 100008. [Google Scholar] [CrossRef]
- Cao, J.; Wang, X.; Zhao, H.; Ma, M.; Chang, M. Evaluating the effects of ground-level O3 on rice yield and economic losses in Southern China. Environ. Pollut. 2020, 267, 115694. [Google Scholar] [CrossRef]
- Aunan, K.; Berntsen, T.K.; Seip, H.M. Surface ozone in China and its possible impact on agricultural crop yields. AMBIO J. Hum. Environ. 2000, 29, 294–301. [Google Scholar] [CrossRef]
- Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B.P.; Sinha, V. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements. Atmos. Chem. Phys. 2015, 15, 9555–9576. [Google Scholar] [CrossRef]
- Danh, N.T.; Huy, L.N.; Oanh, N.T.K. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. Sci. Total Environ. 2016, 566–567, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Venkataramani, S.; Naja, M.; Kuniyal, J.C.; Mandal, T.K.; Bhuyan, P.K.; Kumari, K.M.; Tripathi, S.N.; Sarkar, U.; Das, T.; et al. Loss of crop yields in India due to surface ozone: An estimation based on a network of observations. Environ. Sci. Pollut. Res. 2017, 24, 20972–20981. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jiang, F.; Zhao, J.; Zhu, G.; He, X.; Ma, X.; Li, S.; Sabel, C.E.; Wang, H. Impacts of O3 on premature mortality and crop yield loss across China. Atmos. Environ. 2018, 194, 41–47. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Zhang, Y.; Li, T. Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environ. Pollut. 2020, 258, 113794. [Google Scholar] [CrossRef]
- Hollaway, M.J.; Arnold, S.R.; Challinor, A.J.; Emberson, L.D. Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere. Biogeosciences 2012, 9, 271–292. [Google Scholar] [CrossRef]
- Wild, O.; Fiore, A.M.; Shindell, D.T.; Doherty, R.M.; Collins, W.J.; Dentener, F.J.; Schultz, M.G.; Gong, S.; MacKenzie, I.A.; Zeng, G.; et al. Modelling future changes in surface ozone: A parameterized approach. Atmos. Chem. Phys. 2012, 12, 2037–2054. [Google Scholar] [CrossRef]
- Wang, Y.; Jacob, D.J. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J. Geophys. Res. 1998, 103, 31123–31135. [Google Scholar] [CrossRef]
- Parrish, D.D.; Petropavlovskikh, I.; Oltmans, S.J. Reversal of Long-Term Trend in Baseline Ozone Concentrations at the North American West Coast. Geophys. Res. Lett. 2017, 44, 10675–10681. [Google Scholar] [CrossRef]
- Derwent, R.G.; Manning, A.J.; Simmonds, P.G.; Spain, T.G.; O’Doherty, S. Long-term trends in ozone in baseline and European regionally-polluted air at Mace Head, Ireland over a 30-year period. Atmos. Environ. 2018, 179, 279–287. [Google Scholar] [CrossRef]
Simulation Name | CH4 Emissions or Mixing Ratio (ppbv) | Reference |
---|---|---|
BASE | 1808 | World Meteorological Organization [15] |
CASE1 | 50% anthropogenic CH4 reduction | Fiore et al. [16] |
Country | BASE | CASE1 | BASE | CASE1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AOT40 | RYL | RPL | AOT40 | RYL | RPL | M7 | RYL | RPL | M7 | RYL | RPL | |
Japan | 9.1 | 3.8 | 236.1 | 6.8 | 2.8 | 172.8 | 45.5 | 2.0 | 121.5 | 43.2 | 1.6 | 101.2 |
Republic of Korea | 13.7 | 5.6 | 282.5 | 10.9 | 4.4 | 219.8 | 50.3 | 2.6 | 131.8 | 47.6 | 2.2 | 110.5 |
North Korea | 15.5 | 6.4 | 136.7 | 12.4 | 5.1 | 108 | 48.2 | 2.3 | 49.1 | 46.0 | 2.0 | 41.8 |
China | 26.5 | 10.8 | 22,202.0 | 22.3 | 9.1 | 18,296.1 | 55.8 | 3.7 | 7047.2 | 52.9 | 3.2 | 5971.4 |
Philippines | 0.2 | 0.1 | 8.0 | 0.1 | 0.1 | 5.9 | 21.8 | 0.1 | 7.2 | 20.7 | 0.0 | 4.4 |
Vietnam | 11.2 | 4.7 | 1138.5 | 9.7 | 4.1 | 949.1 | 41.8 | 1.6 | 416.1 | 39.8 | 1.4 | 348.0 |
Cambodia | 5.6 | 2.3 | 74.1 | 4.2 | 1.7 | 54 | 34.6 | 0.7 | 23.6 | 32.5 | 0.5 | 16.8 |
Laos | 19.5 | 8.7 | 94.5 | 17 | 7.5 | 81.9 | 47.1 | 2.4 | 22.9 | 45.1 | 2.1 | 20.0 |
Thailand | 3.3 | 1.4 | 319.6 | 2.5 | 1.1 | 237.3 | 31.5 | 0.6 | 118.8 | 29.5 | 0.4 | 87.7 |
Myanmar | 1.0 | 0.4 | 21.9 | 1 | 0.4 | 26.7 | 24.0 | 0.1 | 5.0 | 22.1 | 0.1 | 2.5 |
Malaysia | 6.3 | 3.3 | 38.8 | 5.4 | 2.8 | 32.4 | 32.4 | 0.9 | 12.0 | 31.0 | 0.8 | 10.3 |
Indonesia | 1.6 | 0.7 | 541.5 | 1.3 | 0.6 | 428.8 | 25.6 | 0.3 | 215.4 | 24.5 | 0.3 | 177.9 |
Bangladesh | 8.0 | 3.3 | 1183.3 | 5.9 | 2.4 | 804.5 | 38.2 | 1.2 | 490.6 | 34.9 | 0.8 | 338.8 |
Nepal | 14.9 | 6.3 | 363.6 | 10.6 | 4.4 | 256.2 | 47.7 | 2.4 | 115.5 | 44.0 | 1.9 | 90.9 |
Bhutan | 41.5 | 18.6 | 10.3 | 35.1 | 15.8 | 8.4 | 61.4 | 4.8 | 2.2 | 58.1 | 4.1 | 1.9 |
India | 32.8 | 13.8 | 17,322.4 | 26.8 | 11.2 | 13,645.8 | 53.9 | 3.5 | 3861.4 | 50.5 | 2.9 | 3161.7 |
Pakistan | 32.3 | 13.6 | 1116.8 | 25.2 | 10.6 | 815.3 | 58.0 | 4.3 | 324.9 | 53.9 | 3.5 | 256.5 |
Brunei | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 25.3 | 0.0 | 0.0 | 24.5 | 0.0 | 0.0 |
Taiwan | 10.6 | 4.7 | 26.8 | 7.9 | 3.5 | 20.2 | 46.9 | 2.3 | 12.8 | 43.8 | 1.8 | 10.3 |
Sri Lanka | 0.6 | 0.3 | 2.9 | 0.3 | 0.2 | 1.4 | 31.4 | 0.4 | 8.0 | 29.7 | 0.3 | 5.4 |
Asia | 22.3 | 9.5 | 45,120.5 | 18.4 | 7.8 | 36,164.6 | 48.5 | 2.9 | 12,985.9 | 45.8 | 2.4 | 10,757.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatsumi, K. Effect of Surface Methane Controls on Ozone Concentration and Rice Yield in Asia. Atmosphere 2023, 14, 1558. https://doi.org/10.3390/atmos14101558
Tatsumi K. Effect of Surface Methane Controls on Ozone Concentration and Rice Yield in Asia. Atmosphere. 2023; 14(10):1558. https://doi.org/10.3390/atmos14101558
Chicago/Turabian StyleTatsumi, Kenichi. 2023. "Effect of Surface Methane Controls on Ozone Concentration and Rice Yield in Asia" Atmosphere 14, no. 10: 1558. https://doi.org/10.3390/atmos14101558
APA StyleTatsumi, K. (2023). Effect of Surface Methane Controls on Ozone Concentration and Rice Yield in Asia. Atmosphere, 14(10), 1558. https://doi.org/10.3390/atmos14101558