Lightning Nowcasting Using Solely Lightning Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Formulation
2.2. Data
2.3. Baselines
2.4. Proposed Models
2.5. Loss, Metrics, and Training Process
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WRF | Weather research and forecasting |
CAPE | Convective available potential energy |
LSTM | Long short-term memory |
ConvLSTM | Convolutional LSTM |
ResUNet | Residual U-Net |
MRMS | multi-radar multi-sensor |
NOAA | National Oceanic and Atmospheric Administration |
GLM | Geostationary Lightning Mapper |
ABI | Advanced Baseline Imager |
GOES | Geostationary Operational Environmental Satellites |
TP | True positive |
FP | False positive |
FN | False negative |
POD | Probability of detection |
FAR | False alarm ratio |
Appendix A. Models’ Architecture
Appendix B. Optimal Threshold
References
- Cooper, M.A.; Holle, R.L. (Eds.) Current Global Estimates of Lightning Fatalities and Injuries. In Reducing Lightning Injuries Worldwide; Springer Natural Hazards; Springer International Publishing: Cham, Switzerland, 2019; pp. 65–73. [Google Scholar] [CrossRef]
- Cerveny, R.S.; Bessemoulin, P.; Burt, C.C.; Cooper, M.A.; Cunjie, Z.; Dewan, A.; Finch, J.; Holle, R.L.; Kalkstein, L.; Kruger, A.; et al. WMO Assessment of Weather and Climate Mortality Extremes: Lightning, Tropical Cyclones, Tornadoes, and Hail. Weather Clim. Soc. 2017, 9, 487–497. [Google Scholar] [CrossRef]
- Watson, A.I.; Holle, R.L.; López, R.E.; Ortiz, R.; Nicholson, J.R. Surface Wind Convergence as a Short-Term Predictor of Cloud-to-Ground Lightning at Kennedy Space Center. Weather Forecast. 1991, 6, 49–64. [Google Scholar] [CrossRef]
- Watson, A.I.; López, R.E.; Holle, R.L.; Daugherty, J.R. The Relationship of Lightning to Surface Convergence at Kennedy Space Center: A Preliminary Study. Weather Forecast. 1987, 2, 140–157. [Google Scholar] [CrossRef]
- Yokoyama, S.; Honjo, N.; Yasuda, Y.; Member, K. Causes of wind turbine blade damages due to lightning and future research target to get better protection measures. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 823–830. [Google Scholar] [CrossRef]
- Braam, H.; Ramakers, S.G.M.; Rademakers, L.; Wessels, H.; Prins, R.K.N.J.; Lok, R.; Leunis, L. Lightning Damage of OWECS Part 3: “Case Studies”; ECN, Energy Research Centre of the Netherlands: Petten, The Netherlands, 2002; Available online: https://publications.ecn.nl/ECN-C--02-054 (accessed on 21 March 2023).
- Curran, E.; Holle, R.; López, R. Lightning Casualties and Damages in the United States from 1959 to 1994. J. Clim. 2000, 13, 3448–3464. [Google Scholar] [CrossRef]
- Mansouri, E.; Mostajabi, A.; Schulz, W.; Diendorfer, G.; Rubinstein, M.; Rachidi, F. On the Use of Benford’s Law to Assess the Quality of the Data Provided by Lightning Locating Systems. Atmosphere 2022, 13, 552. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Straka, J.M.; Ziegler, C.L. A Lightning Parameterization for Numerical Cloud Models. J. Appl. Meteorol. 2001, 40, 459–478. [Google Scholar] [CrossRef]
- Mansell, E.R.; MacGorman, D.R.; Ziegler, C.L.; Straka, J.M. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-12. [Google Scholar] [CrossRef]
- Mansell, E.R.; MacGorman, D.R.; Ziegler, C.L.; Straka, J.M. Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res. Atmos. 2005, 110, D12101. [Google Scholar] [CrossRef]
- Helsdon, J.H.; Wojcik, W.A.; Farley, R.D. An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model. J. Geophys. Res. Atmos. 2001, 106, 1165–1192. [Google Scholar] [CrossRef]
- Fierro, A.O.; Mansell, E.R.; Ziegler, C.L.; MacGorman, D.R. Explicit electrification and lightning forecast implemented within the WRF-ARW model. In Proceedings of the XV International Conference on Atmospheric Electricity, Norman, OK, USA, 15–20 June 2014; p. 11. [Google Scholar]
- Fierro, A.O.; Mansell, E.R.; MacGorman, D.R.; Ziegler, C.L. The Implementation of an Explicit Charging and Discharge Lightning Scheme within the WRF-ARW Model: Benchmark Simulations of a Continental Squall Line, a Tropical Cyclone, and a Winter Storm. Mon. Weather Rev. 2013, 141, 2390–2415. [Google Scholar] [CrossRef]
- Guichard, F.; Couvreux, F. A short review of numerical cloud-resolving models. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1373578. [Google Scholar] [CrossRef]
- Field, P.R.; Roberts, M.J.; Wilkinson, J.M. Simulated Lightning in a Convection Permitting Global Model. J. Geophys. Res. Atmos. 2018, 123, 9370–9377. [Google Scholar] [CrossRef]
- Dowdy, A.J. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Sci. Rep. 2016, 6, 20874. [Google Scholar] [CrossRef]
- Romps, D.M.; Charn, A.B.; Holzworth, R.H.; Lawrence, W.E.; Molinari, J.; Vollaro, D. CAPE Times P Explains Lightning Over Land But Not the Land-Ocean Contrast. Geophys. Res. Lett. 2018, 45, 12623–12630. [Google Scholar] [CrossRef]
- Bates, B.C.; Dowdy, A.J.; Chandler, R.E. Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables. J. Appl. Meteorol. Climatol. 2018, 57, 525–534. [Google Scholar] [CrossRef]
- Lopez, P. A Lightning Parameterization for the ECMWF Integrated Forecasting System. Mon. Weather Rev. 2016, 144, 3057–3075. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 1992, 97, 9919–9933. [Google Scholar] [CrossRef]
- Lynn, B.H.; Yair, Y.; Price, C.; Kelman, G.; Clark, A.J. Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models. Weather Forecast. 2012, 27, 1470–1488. [Google Scholar] [CrossRef]
- Tippett, M.K.; Koshak, W.J. A Baseline for the Predictability of U.S. Cloud-to-Ground Lightning. Geophys. Res. Lett. 2018, 45, 10719–10728. [Google Scholar] [CrossRef]
- Golding, B.W. Nimrod: A system for generating automated very short range forecasts. Meteorol. Appl. 1998, 5, 1–16. [Google Scholar] [CrossRef]
- Rojas-Campos, A.; Langguth, M.; Wittenbrink, M.; Pipa, G. Deep learning models for generation of precipitation maps based on numerical weather prediction. Geosci. Model Dev. 2023, 16, 1467–1480. [Google Scholar] [CrossRef]
- Serifi, A.; Günther, T.; Ban, N. Spatio-Temporal Downscaling of Climate Data Using Convolutional and Error-Predicting Neural Networks. Front. Clim. 2021, 3, 656479. [Google Scholar] [CrossRef]
- Leinonen, J.; Hamann, U.; Germann, U. Seamless Lightning Nowcasting with Recurrent-Convolutional Deep Learning. Artif. Intell. Earth Syst. 2022, 1, e220043. [Google Scholar] [CrossRef]
- Geng, Y.a.; Li, Q.; Lin, T.; Jiang, L.; Xu, L.; Zheng, D.; Yao, W.; Lyu, W.; Zhang, Y. LightNet: A Dual Spatiotemporal Encoder Network Model for Lightning Prediction. In KDD ’19, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2439–2447. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.k.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Advances in Neural Information Processing Systems 28 (NIPS 2015); Curran Associates, Inc.: Red Hook, NY, USA, 2015. [Google Scholar]
- Lin, T.; Li, Q.; Geng, Y.A.; Jiang, L.; Xu, L.; Zheng, D.; Yao, W.; Lyu, W.; Zhang, Y. Attention-Based Dual-Source Spatiotemporal Neural Network for Lightning Forecast. IEEE Access 2019, 7, 158296–158307. [Google Scholar] [CrossRef]
- Brodehl, S.; Müller, R.; Schömer, E.; Spichtinger, P.; Wand, M. End-to-End Prediction of Lightning Events from Geostationary Satellite Images. Remote Sens. 2022, 14, 3760. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part IV 14; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Weigert, M.; Schmidt, U.; Boothe, T.; Müller, A.; Dibrov, A.; Jain, A.; Wilhelm, B.; Schmidt, D.; Broaddus, C.; Culley, S.; et al. Content-aware image restoration: Pushing the limits of fluorescence microscopy. Nat. Methods 2018, 15, 1090–1097. [Google Scholar] [CrossRef]
- Song, G.; Li, S.; Xing, J. Lightning nowcasting with aerosol-informed machine learning and satellite-enriched dataset. npj Clim. Atmos. Sci. 2023, 6, 1–10. [Google Scholar] [CrossRef]
- Soula, S. Lightning and Precipitation. In Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research; Betz, H.D., Schumann, U., Laroche, P., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 447–463. [Google Scholar] [CrossRef]
- Agrawal, S.; Barrington, L.; Bromberg, C.; Burge, J.; Gazen, C.; Hickey, J. Machine Learning for Precipitation Nowcasting from Radar Images. arXiv 2019, arXiv:1912.12132. [Google Scholar] [CrossRef]
- Sønderby, C.K.; Espeholt, L.; Heek, J.; Dehghani, M.; Oliver, A.; Salimans, T.; Agrawal, S.; Hickey, J.; Kalchbrenner, N. MetNet: A Neural Weather Model for Precipitation Forecasting. arXiv 2020, arXiv:2003.12140. [Google Scholar] [CrossRef]
- Espeholt, L.; Agrawal, S.; Sønderby, C.; Kumar, M.; Heek, J.; Bromberg, C.; Gazen, C.; Carver, R.; Andrychowicz, M.; Hickey, J.; et al. Deep learning for twelve hour precipitation forecasts. Nat. Commun. 2022, 13, 5145. [Google Scholar] [CrossRef]
- Albrecht, R.I.; Goodman, S.J.; Buechler, D.E.; Blakeslee, R.J.; Christian, H.J. Where Are the Lightning Hotspots on Earth? Bull. Am. Meteorol. Soc. 2016, 97, 2051–2068. [Google Scholar] [CrossRef]
- Neumann, C.J. Frequency and Duration of Thunderstorms at Cape Kennedy, Part 1; Technical Report NASA-CR-97843; Weather Bureau; Silver Spring: Montgomery, MD, USA, 1968. [Google Scholar]
- Mecikalski, J.; Jewett, C.; Carey, L.; Zavodsky, B.; Stano, G.; Chronis, T. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability. In Proceedings of the Conference on the Meteorological Applications of Lightning Data, Phoenix, AZ, USA, 4–8 January 2015. [Google Scholar]
- Mostajabi, A.; Finney, D.L.; Rubinstein, M.; Rachidi, F. Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. npj Clim. Atmos. Sci. 2019, 2, 41. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Schwenk, H.; Bengio, Y. Training Methods for Adaptive Boosting of Neural Networks. In Advances in Neural Information Processing Systems 10 (NIPS 1997); Jordan, M., Kearns, M., Solla, S., Eds.; MIT Press: Cambridge, MA, USA, 1997; Volume 10. [Google Scholar]
- Japkowicz, N.; Hanson, S.J.; Gluck, M.A. Nonlinear Autoassociation Is Not Equivalent to PCA. Neural Comput. 2000, 12, 531–545. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar] [CrossRef]
- Zhou, K.; Zheng, Y.; Dong, W.; Wang, T. A Deep Learning Network for Cloud-to-Ground Lightning Nowcasting with Multisource Data. J. Atmos. Ocean. Technol. 2020, 37, 927–942. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Shamir, R.R.; Duchin, Y.; Kim, J.; Sapiro, G.; Harel, N. Continuous Dice Coefficient: A Method for Evaluating Probabilistic Segmentations. arXiv 2019, arXiv:1906.11031. [Google Scholar]
- Schultz, M.G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S. Can deep learning beat numerical weather prediction? Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2021, 379, 20200097. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Mansouri, E. ehsan27770/Lightning_Nowcasting_Data_Retrieval. 2023. Available online: https://zenodo.org/records/7773771 (accessed on 27 March 2023).
- Mansouri, E. ehsan27770/Lightning_Nowcasting_Data_Preparation. 2023. Available online: https://zenodo.org/records/7773764 (accessed on 27 March 2023).
- Mansouri, E. ehsan27770/Lightning_Nowcasting_Model_Training. 2023. Available online: https://zenodo.org/records/7773758 (accessed on 27 March 2023).
- Gavrikov, P. Visualkeras. GitHub Repository. 2020. Available online: https://github.com/paulgavrikov/visualkeras (accessed on 25 March 2023).
Model Name | Parameters | f1-15 | p-15 | r-15 | f1-30 | p-30 | r-30 | f1-45 | p-45 | r-45 | f1-60 | p-60 | r-60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
persistence | 0 | 0.75 | 0.75 | 0.75 | 0.62 | 0.62 | 0.62 | 0.52 | 0.52 | 0.52 | 0.43 | 0.43 | 0.43 |
Autoencoder-small | 7M | 0.52 | 0.42 | 0.67 | 0.50 | 0.42 | 0.64 | 0.48 | 0.41 | 0.61 | 0.46 | 0.38 | 0.58 |
Autoencoder-medium | 28M | 0.40 | 0.32 | 0.57 | 0.40 | 0.32 | 0.55 | 0.39 | 0.31 | 0.54 | 0.38 | 0.30 | 0.53 |
Autoencoder-large | 113M | 0.30 | 0.22 | 0.46 | 0.29 | 0.22 | 0.46 | 0.29 | 0.22 | 0.45 | 0.29 | 0.22 | 0.44 |
U-Net-small | 8M | 0.69 | 0.59 | 0.85 | 0.64 | 0.55 | 0.76 | 0.59 | 0.52 | 0.69 | 0.55 | 0.48 | 0.63 |
U-Net-medium | 31M | 0.69 | 0.59 | 0.84 | 0.64 | 0.55 | 0.76 | 0.59 | 0.52 | 0.69 | 0.54 | 0.48 | 0.64 |
U-Net-large | 126M | 0.69 | 0.59 | 0.84 | 0.64 | 0.55 | 0.76 | 0.59 | 0.52 | 0.69 | 0.55 | 0.49 | 0.63 |
ResUNet-small | 8M | 0.70 | 0.59 | 0.85 | 0.64 | 0.55 | 0.77 | 0.59 | 0.52 | 0.71 | 0.55 | 0.48 | 0.64 |
ResUNet-medium | 33M | 0.70 | 0.59 | 0.85 | 0.64 | 0.55 | 0.78 | 0.59 | 0.51 | 0.71 | 0.55 | 0.48 | 0.65 |
ResUNet-large | 133M | 0.70 | 0.59 | 0.86 | 0.64 | 0.55 | 0.78 | 0.59 | 0.51 | 0.70 | 0.55 | 0.48 | 0.65 |
Model Name | Parameters | Loss | Precision | Recall | f1-15 | f1-30 | f1-45 | f1-60 |
---|---|---|---|---|---|---|---|---|
persistence | 0 | 1.33 | 0.57 | 0.58 | 0.74 | 0.62 | 0.51 | 0.42 |
ResUnet 15 min | 8M | 0.68 | 0.65 | 0.79 | 0.72 | - | - | - |
ResUnet 30 min | 8M | 0.77 | 0.58 | 0.73 | - | 0.65 | - | - |
ResUnet 45 min | 8M | 0.86 | 0.53 | 0.67 | - | - | 0.59 | - |
ResUnet 60 min | 8M | 0.93 | 0.46 | 0.66 | - | - | - | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, E.; Mostajabi, A.; Tong, C.; Rubinstein, M.; Rachidi, F. Lightning Nowcasting Using Solely Lightning Data. Atmosphere 2023, 14, 1713. https://doi.org/10.3390/atmos14121713
Mansouri E, Mostajabi A, Tong C, Rubinstein M, Rachidi F. Lightning Nowcasting Using Solely Lightning Data. Atmosphere. 2023; 14(12):1713. https://doi.org/10.3390/atmos14121713
Chicago/Turabian StyleMansouri, Ehsan, Amirhosein Mostajabi, Chong Tong, Marcos Rubinstein, and Farhad Rachidi. 2023. "Lightning Nowcasting Using Solely Lightning Data" Atmosphere 14, no. 12: 1713. https://doi.org/10.3390/atmos14121713
APA StyleMansouri, E., Mostajabi, A., Tong, C., Rubinstein, M., & Rachidi, F. (2023). Lightning Nowcasting Using Solely Lightning Data. Atmosphere, 14(12), 1713. https://doi.org/10.3390/atmos14121713