Anthropogenic Emission Scenarios over Europe with the WRF-CHIMERE-v2020 Models: Impact of Duration and Intensity of Reductions on Surface Concentrations during the Winter of 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observations
2.2. WRF and CHIMERE
2.3. Anthropogenic Emissions
2.4. Simulations and the Modeling Framework
- Ref: A reference simulation corresponding to the offline mode. This simulation is used as the reference case that the scenarios are compared to.
- Ref-CPL2, Ref-CPL3 and Ref-CPL4: Same as Ref but with the coupling effects. These simulations are to be compared to both the offline reference simulation as well as the coupled scenarios mentioned below.
- 2 × 6 simulations with a 25% and 50% decrease in anthropogenic emissions and using the offline configuration of Ref. These scenarios aim to analyze the effect of the different degrees of emission reductions for a list of species compared to the reference simulation (named Ref above).
- One simulation reducing all emissions by 100% for the fine domain. This simulation is performed to assess the background and transported concentrations.
- Three additional simulations, CPL2-ALL, CPL3-ALL and CPL4-ALL, mixing the effects of the WRF-CHIMERE coupling and the 50% of anthropogenic emissions. These scenarios are performed to assess the aerosol effects on meteorological fields and emission reductions.
- Two simulations applying a 50% decrease to the emissions of all aforementioned groups on the intermediate domain (ALL-redPAR10) and on the continental domain (ALL-redFAIR30). These scenarios aim to assess the changes observed in concentrations when emissions are reduced on a larger domain compared to the scenarios mentioned above.
- Six simulations applying a 50% reduction decrease to the emissions of each of the three domains starting several days before the episode the start, i.e., the 8th and the the 1st. These scenarios are performed to understand the effect of the emission reduction starting time on the concentrations of pollutants observed during the episode.
3. The Reference Simulation
3.1. Evaluation of the Reference Simulation
3.1.1. Meteorological Variables
Variable | Domain | Model Mean | Obs Mean | RMSE | MeanBias | PearsonR (−1:1) | No. Stations |
---|---|---|---|---|---|---|---|
Tmax (K) (E-OBS) | FAIR30 | 278.02 (279.58) | 279.52 (280.10) | 2.34 (1.33) | −1.51 (−0.53) | 0.85 (0.90) | 3571 |
PAR10 | 278.97 (279.60) | 279.66 (280.10) | 1.38 (1.13) | −0.69 (−0.50) | 0.89 (0.93) | 270 | |
PAR03 | 279.76 | 280.11 | 1.06 | −0.35 | 0.93 | 56 | |
Tmean (K) (E-OBS) | FAIR30 | 274.74 (276.63) | 275.88 (277.11) | 1.85 (1.03) | −1.15 (−0.48) | 0.89 (0.93) | 3571 |
PAR10 | 275.88 (276.65) | 276.59 (277.11) | 1.29 (0.95) | −0.71 (−0.46) | 0.90 (0.94) | 270 | |
PAR03 | 276.75 | 277.12 | 0.96 | −0.37 | 0.94 | 56 | |
Tmin (K) (E-OBS) | FAIR30 | 271.77 (273.89) | 272.58 (274.09) | 2.35 (1.42) | −0.81 (−0.20) | 0.80 (0.83) | 3571 |
PAR10 | 272.88 (273.97) | 273.78 (274.09) | 1.91 (1.29) | −0.90 (−0.12) | 0.80 (0.87) | 270 | |
PAR03 | 274.05 | 274.10 | 1.36 | −0.05 | 0.85 | 56 | |
T (K) (MF) | FAIR30 | 276.87 | 276.91 | 0.90 | −0.04 | 0.94 | 8 |
PAR10 | 276.71 | 276.91 | 0.82 | −0.20 | 0.95 | 8 | |
PAR03 | 276.94 | 276.91 | 0.88 | 0.03 | 0.95 | 8 | |
T (K) (WOUDC) | FAIR30 | 264.58 (266.19) | 263.11 (264.91) | 6.15 (4.96) | 1.62 (1.32) | 0.995 (0.997) | 11 |
PAR10 | 265.49 | 263.98 | 5.42 | 1.50 | 0.998 | 1 | |
PAR03 | – | – | – | – | – | – | |
WSmean (m/s) (E-OBS) | FAIR30 | 6.12 | 4.36 | 2.60 | 1.76 | 0.80 | 533 |
PAR10 | 4.34 | 3.86 | 0.99 | 0.49 | 0.91 | 13 | |
PAR03 | – | – | – | – | – | – | |
WS (m/s) (MF) | FAIR30 | 3.84 | 3.77 | 0.95 | 0.08 | 0.89 | 8 |
PAR10 | 3.77 | 3.77 | 1.00 | 0.01 | 0.90 | 8 | |
PAR03 | 3.75 | 3.77 | 1.00 | −0.01 | 0.90 | 8 | |
RHmean (0:1) (E-OBS) | FAIR30 | 0.87 (0.81) | 0.82 (0.83) | 0.10 (0.05) | 0.05 (−0.01) | 0.64 (0.81) | 533 |
PAR10 | 0.85 (0.81) | 0.83 (0.83) | 0.07 (0.06) | 0.02 (−0.01) | 0.71 (0.80) | 18 | |
PAR03 | 0.80 | 0.83 | 0.07 | −0.03 | 0.79 | 7 | |
RH (0:1) (MF) | FAIR30 | 0.80 | 0.82 | 0.06 | −0.02 | 0.81 | 8 |
PAR10 | 0.82 | 0.82 | 0.05 | −0.00 | 0.81 | 8 | |
PAR03 | 0.80 | 0.82 | 0.06 | −0.02 | 0.80 | 8 |
Species | Domain | Model Mean (g·m) | Obs Mean (g·m) | RMSE (g·m) | MeanBias (g·m) | PearsonR (−1:1) | No. Stations |
---|---|---|---|---|---|---|---|
O (EEA) | FAIR30 | 47.70 (35.87) | 45.35 (37.99) | 15.67 (10.15) | 2.35 (−2.12) | 0.63 (0.85) | 3571 |
PAR10 | 38.29 (35.53) | 40.13 (37.99) | 9.17 (9.60) | −1.84 (−4.46) | 0.87 (0.88) | 270 | |
PAR03 | 33.03 | 37.99 | 9.87 | −4.96 | 0.89 | 56 | |
O (WOUDC) | FAIR30 | 45.32 (43.60) | 40.62 (39.72) | 18.86 (10.94) | 4.70 (3.88) | 0.85 (0.93) | 11 |
PAR10 | 47.67 | 40.90 | 12.84 | 6.77 | 0.90 | 1 | |
PAR03 | – | – | – | – | – | – | |
NO (EEA) | FAIR30 | 9.98 (20.68) | 24.47 (35.81) | 16.82 (17.23) | −14.49 (−15.13) | 0.54 (0.72) | 3571 |
PAR10 | 18.72 (30.35) | 27.34 (35.81) | 11.88 (11.20) | −8.63 (−5.46) | 0.74 (0.74) | 270 | |
PAR03 | 32.80 | 35.81 | 11.22 | −3.02 | 0.74 | 56 | |
PM (EEA) | FAIR30 | 20.31 (20.36) | 26.20 (23.83) | 14.42 (7.25) | −5.89 (−3.46) | 0.66 (0.82) | 3571 |
PAR10 | 22.19 (22.04) | 22.91 (23.83) | 8.44 (7.85) | −0.72 (−1.79) | 0.82 (0.84) | 270 | |
PAR03 | 22.43 | 23.83 | 8.11 | −1.40 | 0.82 | 56 | |
PM (EEA) | FAIR30 | 18.87 (18.53) | 19.13 (16.47) | 10.67 (5.48) | −0.26 (2.06) | 0.77 (0.90) | 3571 |
PAR10 | 21.43 (19.65) | 17.12 (16.47) | 8.92 (7.14) | 4.31 (3.18) | 0.82 (0.85) | 270 | |
PAR03 | 19.93 | 16.47 | 7.51 | 3.45 | 0.86 | 56 | |
NH (EBAS) | FAIR30 | 2.34 (2.65) | 2.49 (2.56) | 2.34 (1.36) | −0.15 (0.10) | 0.38 (0.82) | 4 |
PAR10 | 2.74 | 2.56 | 1.70 | 0.18 | 0.74 | 1 | |
PAR03 | 2.75 | 2.56 | 1.73 | 0.19 | 0.74 | 1 | |
NO (EBAS) | FAIR30 | 6.48 (7.55) | 6.57 (9.44) | 6.52 (6.18) | −0.09 (−1.89) | 0.39 (0.38) | 4 |
PAR10 | 7.99 | 9.44 | 6.69 | −1.45 | 0.79 | 1 | |
PAR03 | 7.95 | 9.44 | 6.80 | −1.48 | 0.79 | 1 | |
OA (EBAS) | FAIR30 | 3.43 (3.44) | 4.58 (5.61) | 1.94 (3.95) | −1.16 (−2.16) | 0.94 (0.76) | 6 |
PAR10 | 3.61 | 5.61 | 4.29 | −2.00 | 0.66 | 1 | |
PAR03 | 3.36 | 5.61 | 4.51 | −2.24 | 0.63 | 1 |
3.1.2. Surface Concentrations
Criteria Pollutants
PM Components
3.1.3. Ozone Vertical Profile
3.2. Effect of Chemistry-Meteorology Couplings
4. Emission Reduction Scenarios
4.1. Analysis of Scenarios over the Fine Domain
4.2. Additivity of the Emission Reduction Scenarios
4.3. Urban vs. Rural Differences
4.4. Daily Time Series and Exceedances
4.5. Capability to Remove Exceedances
4.6. Effects of Coupling on the Emission Reduction Scenarios
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef] [Green Version]
- EEA. Health Impacts of Air Pollution in Europe. 2021. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2021/health-impacts-of-air-pollution (accessed on 10 November 2022).
- Gariazzo, C.; Carlino, G.; Silibello, C.; Renzi, M.; Finardi, S.; Pepe, N.; Radice, P.; Forastiere, F.; Michelozzi, P.; Viegi, G.; et al. A multi-city air pollution population exposure study: Combined use of chemical-transport and random-Forest models with dynamic population data. Sci. Total Environ. 2020, 724, 138102. [Google Scholar] [CrossRef]
- Cholakian, A.; Coll, I.; Colette, A.; Beekmann, M. Exposure of the population of southern France to air pollutants in future climate case studies. Atmos. Environ. 2021, 264, 118689. [Google Scholar] [CrossRef]
- Santiago, J.; Rivas, E.; Gamarra, A.; Vivanco, M.; Buccolieri, R.; Martilli, A.; Lechón, Y.; Martín, F. Estimates of population exposure to atmospheric pollution and health-related externalities in a real city: The impact of spatial resolution on the accuracy of results. Sci. Total Environ. 2022, 819, 152062. [Google Scholar] [CrossRef]
- Lacressonnière, G.; Foret, G.; Beekmann, M.; Siour, G.; Engardt, M.; Gauss, M.; Watson, L.; Andersson, C.; Colette, A.; Josse, B.; et al. Impacts of regional climate change on air quality projections and associated uncertainties. Clim. Chang. 2016, 136, 309–324. [Google Scholar] [CrossRef]
- Cholakian, A.; Colette, A.; Coll, I.; Ciarelli, G.; Beekmann, M. Future climatic drivers and their effect on PM 10 components in Europe and the Mediterranean Sea. Atmos. Chem. Phys. 2019, 19, 4459–4484. [Google Scholar] [CrossRef] [Green Version]
- Michel, B.; Michel, M.; Yves, M.; Jean-Michel, P.; Bruno, P. Spatial outlier detection in the PM10 monitoring network of Normandy (France). Atmos. Pollut. Res. 2015, 6, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Tamas, W.; Notton, G.; Paoli, C.; Nivet, M.L.; Voyant, C. Hybridization of air quality forecasting models using machine learning and clustering: An original approach to detect pollutant peaks. Aerosol Air Qual. Res. 2016, 16, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Marécal, V.; Peuch, V.H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef]
- Baklanov, A.; Zhang, Y. Advances in air quality modeling and forecasting. Glob. Transitions 2020, 2, 261–270. [Google Scholar] [CrossRef]
- Choulga, M.; Janssens-Maenhout, G.; Super, I.; Solazzo, E.; Agusti-Panareda, A.; Balsamo, G.; Bousserez, N.; Crippa, M.; Denier van der Gon, H.; Engelen, R.; et al. Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation. Earth Syst. Sci. Data 2021, 13, 5311–5335. [Google Scholar] [CrossRef]
- Solazzo, E.; Bianconi, R.; Vautard, R.; Appel, K.W.; Moran, M.D.; Hogrefe, C.; Bessagnet, B.; Brandt, J.; Christensen, J.H.; Chemel, C.; et al. Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmos. Environ. 2012, 53, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Cuvelier, C.; Thunis, P.; Vautard, R.; Amann, M.; Bessagnet, B.; Bedogni, M.; Berkowicz, R.; Brandt, J.; Brocheton, F.; Builtjes, P.; et al. CityDelta: A model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmos. Environ. 2007, 41, 189–207. [Google Scholar] [CrossRef]
- Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Benedetti, A.; et al. The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys. 2014, 14, 10845–10895. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, M.; Vautard, R.; Schaap, M.; Bergström, R.; Bessagnet, B.; Brandt, J.; Builtjes, P.; Christensen, J.; Cuvelier, C.; Graff, A.; et al. Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ. 2007, 41, 2083–2097. [Google Scholar] [CrossRef]
- Thunis, P.; Cuvelier, C.; Roberts, P.; White, L.; Stern, R.; Kerschbaumer, A.; Bessagnet, B.; Bergström, R.; Schaap, M. EURODELTA: Evaluation of a Sectoral Approach to Integrated Assessment Modelling-Second Report. In EUR-Scientific and Technical Research Series-24474 EN-2010; Publications Office of the European Union: Luxembourg, 2010; pp. 1018–5593. [Google Scholar]
- Bessagnet, B.; Pirovano, G.; Mircea, M.; Cuvelier, C.; Aulinger, A.; Calori, G.; Ciarelli, G.; Manders, A.; Stern, R.; Tsyro, S.; et al. Presentation of the EURODELTA III intercomparison exercise–evaluation of the chemistry transport models’ performance on criteria pollutants and joint analysis with meteorology. Atmos. Chem. Phys. 2016, 16, 12667–12701. [Google Scholar] [CrossRef] [Green Version]
- Colette, A.; Andersson, C.; Manders, A.; Mar, K.; Mircea, M.; Pay, M.T.; Raffort, V.; Tsyro, S.; Cuvelier, C.; Adani, M.; et al. EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990–2010. Geosci. Model Dev. 2017, 10, 3255–3276. [Google Scholar] [CrossRef] [Green Version]
- Ciarelli, G.; Theobald, M.R.; Vivanco, M.G.; Beekmann, M.; Aas, W.; Andersson, C.; Bergström, R.; Manders-Groot, A.; Couvidat, F.; Mircea, M.; et al. Trends of inorganic and organic aerosols and precursor gases in Europe: Insights from the EURODELTA multi-model experiment over the 1990–2010 period. Geosci. Model Dev. 2019, 12, 4923–4954. [Google Scholar] [CrossRef] [Green Version]
- FAIRMODE. FAIRMODE. 2022. Available online: https://fairmode.jrc.ec.europa.eu/ (accessed on 10 November 2022).
- Menut, L.; Bessagnet, B.; Mailler, S.; Pennel, R.; Siour, G. Impact of lightning NOx emissions on atmospheric composition and meteorology in Africa and Europe. Atmosphere 2020, 11, 1128. [Google Scholar] [CrossRef]
- EEA. Air Quality e-Reporting (AQ e-Reporting). 2022. Available online: https://www.eea.europa.eu/data-and-maps/data/aqereporting-9 (accessed on 10 November 2022).
- WOUDC. World Ozone and Ultraviolet Radiation Data Centre. 2022. Available online: https://woudc.org/home.php (accessed on 10 November 2022).
- EBAS. EBAS Measurement Database. 2022. Available online: https://ebas-data.nilu.no/Default.aspx (accessed on 10 November 2022).
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- BADC. BADC Database. 2022. Available online: https://data.ceda.ac.uk/badc (accessed on 10 November 2022).
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. CHIMERE 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef] [Green Version]
- Foret, G.; Michoud, V.; Kotthaus, S.; Petit, J.E.; Baudic, A.; Siour, G.; Kim, Y.; Doussin, J.F.; Dupont, J.C.; Formenti, P.; et al. The December 2016 extreme weather and particulate matter pollution episode in the Paris region (France). Atmos. Environ. 2022, 291, 119386. [Google Scholar] [CrossRef]
- Lapere, R.; Menut, L.; Mailler, S.; Huneeus, N. Seasonal variation in atmospheric pollutants transport in central Chile: Dynamics and consequences. Atmos. Chem. Phys. 2021, 21, 6431–6454. [Google Scholar] [CrossRef]
- Wang, W.; Bruyère, C.; Duda, M.; Dudhia, J.; Gill, D.; Kavulich, M.; Keene, K.; Lin, H.; Michalakes, J.; Rizvi, S.; et al. WRF ARW Version 3 Modeling System User’s Guide; Mesoscale & Microscale Meteorology Division, NCAR: Boulder, CO, USA, 2015; pp. 1–428. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. In Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory, NCAR: Boulder, CO, USA, 2000. [Google Scholar] [CrossRef]
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.P.; Super, I.; Denier van der Gon, H. CAMS-REG-v4: A state-of-the-art high-resolution European emission inventory for air quality modelling. Earth Syst. Sci. Data 2022, 14, 491–515. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 1977, 23, 276–299. [Google Scholar] [CrossRef]
- Derognat, C.; Beekmann, M.; Baeumle, M.; Martin, D.; Schmidt, H. Effect of biogenic volatile organic compound emissions on tropospheric chemistry during the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign in the Ile-de-France region. J. Geophys. Res. Atmos. 2003, 108, D17. [Google Scholar] [CrossRef]
- Pun, B.; Seigneur, C. Investigative modeling of new pathways for secondary organic aerosol formation. Atmos. Chem. Phys. 2007, 7, 2199–2216. [Google Scholar] [CrossRef] [Green Version]
- Bessagnet, B.; Menut, L.; Curci, G.; Hodzic, A.; Guillaume, B.; Liousse, C.; Moukhtar, S.; Pun, B.; Seigneur, C.; Schulz, M. Regional modeling of carbonaceous aerosols over Europe—focus on secondary organic aerosols. J. Atmos. Chem. 2008, 61, 175–202. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Bian, H.; Prather, M.J. Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models. J. Atmos. Chem. 2002, 41, 281–296. [Google Scholar] [CrossRef]
- Mailler, S.; Menut, L.; Di Sarra, A.; Becagli, S.; Di Iorio, T.; Bessagnet, B.; Briant, R.; Formenti, P.; Doussin, J.F.; Gómez-Amo, J.; et al. On the radiative impact of aerosols on photolysis rates: Comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign. Atmos. Chem. Phys. 2016, 16, 1219–1244. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.a.; Emmons, L.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Monahan, E.C. The ocean as a source for atmospheric particles. In The Role of Air-Sea Exchange in Geochemical Cycling; Springer: Dordrecht, The Netherlands, 1986; pp. 129–163. [Google Scholar] [CrossRef]
- Alfaro, S.C.; Gomes, L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. Atmos. 2001, 106, 18075–18084. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Briant, R.; Cholakian, A.; Couvidat, F.; Mailler, S.; Pennel, R.; Siour, G.; Tuccella, P.; Turquety, S.; et al. The CHIMERE v2020r1 online chemistry-transport model. Geosci. Model Dev. 2021, 14, 6781–6811. [Google Scholar] [CrossRef]
- Liss, P.S.; Merlivat, L. Air-sea gas exchange rates: Introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling; Springer: Dordrecht, The Netherlands, 1986; pp. 113–127. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. The most detailed portrait of Earth. Eur. Space Agency 2008, 136, 25–31. [Google Scholar]
- Evaltools. Evaltools Python Package. 2022. Available online: https://opensource.umr-cnrm.fr/projects/evaltools (accessed on 9 January 2023).
- Yu, S.; Eder, B.; Dennis, R.; Chu, S.H.; Schwartz, S.E. New unbiased symmetric metrics for evaluation of air quality models. Atmos. Sci. Lett. 2006, 7, 26–34. [Google Scholar] [CrossRef]
- Haeffelin, M.; Barthes, L.; Bock, O.; Boitel, C.; Bony, S.; Bouniol, D.; Chepfer, H.; Chiriaco, M.; Cuesta, J.; Delanoe, J.; et al. A ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys. 2005, 23, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.C.; Jeffries, H.; Byun, D.; Pleim, J. Sensitivity of ozone to model grid resolution - I. Application of high-resolution regional acid deposition model. Atmos. Environ. 1995, 29, 3085–3100. [Google Scholar] [CrossRef]
- Valari, M.; Menut, L. Does an increase in air quality models’ resolution bring surface ozone concentrations closer to reality? J. Atmos. Ocean. Technol. 2008, 25, 1955–1968. [Google Scholar] [CrossRef]
- Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; et al. Performance of European chemistry transport models as function of horizontal resolution. Atmos. Environ. 2015, 112, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Falasca, S.; Curci, G. High-resolution air quality modeling: Sensitivity tests to horizontal resolution and urban canopy with WRF-CHIMERE. Atmos. Environ. 2018, 187, 241–254. [Google Scholar] [CrossRef]
- Briant, R.; Tuccella, P.; Deroubaix, A.; Khvorostyanov, D.; Menut, L.; Mailler, S.; Turquety, S. Aerosol–radiation interaction modelling using online coupling between the WRF 3.7. 1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler. Geosci. Model Dev. 2017, 10, 927–944. [Google Scholar] [CrossRef] [Green Version]
- Tuccella, P.; Menut, L.; Briant, R.; Deroubaix, A.; Khvorostyanov, D.; Mailler, S.; Siour, G.; Turquety, S. Implementation of Aerosol-Cloud Interaction within WRF-CHIMERE Online Coupled Model: Evaluation and Investigation of the Indirect Radiative Effect from Anthropogenic Emission Reduction on the Benelux Union. Atmosphere 2019, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Harker, A.; Richards, L.; Clark, W. The effect of atmospheric SO2 photochemistry upon observed nitrate concentrations in aerosols. Atmos. Environ. 1977, 11, 87–91. [Google Scholar] [CrossRef]
- Sicard, P. Ground-level ozone over time: An observation-based global overview. Curr. Opin. Environ. Sci. Health 2021, 19, 100226. [Google Scholar] [CrossRef]
- Sillman, S.; He, D. Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators. J. Geophys. Res. Atmos. 2002, 107, ACH-26. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Henneman, L.R.; Mulholland, J.A.; Russell, A.G. Empirical development of ozone isopleths: Applications to Los Angeles. Environ. Sci. Technol. Lett. 2019, 6, 294–299. [Google Scholar] [CrossRef]
- Sillman, S. The use of NOy, H2O2, and HNO3 as indicators for ozone-NO x-hydrocarbon sensitivity in urban locations. J. Geophys. Res. Atmos. 1995, 100, 14175–14188. [Google Scholar] [CrossRef]
- Sillman, S.; He, D.; Cardelino, C.; Imhoff, R.E. The use of photochemical indicators to evaluate ozone-NOx-hydrocarbon sensitivity: Case studies from Atlanta, New York, and Los Angeles. J. Air Waste Manag. Assoc. 1997, 47, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Sillman, S.; Vautard, R.; Menut, L.; Kley, D. O3-NOx-VOC sensitivity and NOx-VOC indicators in Paris: Results from models and Atmospheric Pollution Over the Paris Area (ESQUIF) measurements. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Cohan, D.S.; Hu, Y.; Russell, A.G. Alternative approaches to diagnosing ozone production regime. In Air Pollution Modeling and Its Application XVII; Springer: Boston, MA, USA, 2007; pp. 140–148. [Google Scholar] [CrossRef]
- Souri, A.H.; Nowlan, C.R.; Wolfe, G.M.; Lamsal, L.N.; Miller, C.E.C.; Abad, G.G.; Janz, S.J.; Fried, A.; Blake, D.R.; Weinheimer, A.J.; et al. Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign. Atmos. Environ. 2020, 224, 117341. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Tan, Z.; Wang, W.; Yang, Y.; Zhu, Y.; Yang, S.; Song, M.; Chen, S.; Wang, H.; et al. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3–NO x–VOC Sensitivity. Environ. Sci. Technol. 2021, 55, 10935–10945. [Google Scholar] [CrossRef]
- Honoré, C.; Vautard, R.; Beekmann, M. Photochemical regimes in urban atmospheres: The influence of dispersion. Geophys. Res. Lett. 2000, 27, 1895–1898. [Google Scholar] [CrossRef]
- Deguillaume, L.; Beekmann, M.; Derognat, C. Uncertainty evaluation of ozone production and its sensitivity to emission changes over the Ile-de-France region during summer periods. J. Geophys. Res. Atmos. 2008, 113, D2. [Google Scholar] [CrossRef]
- Bessagnet, B.; Beauchamp, M.; Guerreiro, C.; de Leeuw, F.; Tsyro, S.; Colette, A.; Meleux, F.; Rouïl, L.; Ruyssenaars, P.; Sauter, F.; et al. Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards? Environ. Sci. Policy 2014, 44, 149–163. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Technical Report, Licence:CC BY-NC-SA 3.0 IGO; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Vieno, M.; Heal, M.R.; Twigg, M.M.; MacKenzie, I.A.; Braban, C.F.; Lingard, J.J.N.; Ritchie, S.; Beck, R.C.; Moring, A.; Ots, R.; et al. The UK particulate matter air pollution episode of March–April 2014: More than Saharan dust. Environ. Res. Lett. 2016, 11, 044004. [Google Scholar] [CrossRef]
- Boucher, O.; Anderson, T.L. General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res. Atmos. 1995, 100, 26117–26134. [Google Scholar] [CrossRef]
- Seinfeld, J.; Pandis, S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley–Blackwell: New York, NY, USA, 2016; Volume 40, p. 26. [Google Scholar]
Simulation | Reference | |||
Period | Coupling effect | |||
Ref | 01/02/2015–28/02/2015 | No-coupling | ||
Ref-CPL2 | 01/02/2015–28/02/2015 | Direct effects | ||
Ref-CPL3 | 01/02/2015–28/02/2015 | Indirect effects | ||
Ref-CPL4 | 01/02/2015–28/02/2015 | Direct+indirect effects | ||
Simulation | Scenario | |||
Period | Emission reduction | Emission reduction domain | Coupling effect | |
SO | 10/02/2015–17/02/2015 | 25%/50% | PAR03 | No-coupling |
NO | 10/02/2015–17/02/2015 | 25%/50% | PAR03 | No-coupling |
NMVOC | 10/02/2015–17/02/2015 | 25%/50% | PAR03 | No-coupling |
PPM | 10/02/2015–17/02/2015 | 25%/50% | PAR03 | No-coupling |
NH | 10/02/2015–17/02/2015 | 25%/50% | PAR03 | No-coupling |
ALL | 10/02/2015–17/02/2015 | 25%/50%/100% | PAR03 | No-coupling |
CPL2-ALL | 10/02/2015–17/02/2015 | 50% | PAR03 | Direct effects |
CPL3-ALL | 10/02/2015–17/02/2015 | 50% | PAR03 | Indirect effects |
CPL4-ALL | 10/02/2015–17/02/2015 | 50% | PAR03 | Direct+indirect effects |
ALL-redPAR10 | 10/02/2015–17/02/2015 | 50% | PAR10 | No-coupling |
ALL-redFAIR30 | 10/02/2015–17/02/2015 | 50% | FAIR30 | No-coupling |
ALL-2days | 08/02/2015–17/02/2015 | 50% | PAR03 | No-coupling |
ALL-redPAR10-2days | 08/02/2015–17/02/2015 | 50% | PAR10 | No-coupling |
ALL-redFAIR30-2days | 08/02/2015–17/02/2015 | 50% | FAIR30 | No-coupling |
ALL-10days | 01/02/2015– 17/02/2015 | 50% | PAR03 | No-coupling |
ALL-redPAR10-10days | 01/02/2015–17/02/2015 | 50% | PAR10 | No-coupling |
ALL-redFAIR30-10days | 01/02/2015–17/02/2015 | 50% | FAIR30 | No-coupling |
Scenario | ||
---|---|---|
Species | 25% | 50% |
PM | 1.02 | 1.03 |
PM | 1.02 | 1.03 |
NO | 0.99 | 1.0 |
NH | 0.87 | 0.74 |
SO | 1.0 | 1.0 |
O | 1.02 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholakian, A.; Bessagnet, B.; Menut, L.; Pennel, R.; Mailler, S. Anthropogenic Emission Scenarios over Europe with the WRF-CHIMERE-v2020 Models: Impact of Duration and Intensity of Reductions on Surface Concentrations during the Winter of 2015. Atmosphere 2023, 14, 224. https://doi.org/10.3390/atmos14020224
Cholakian A, Bessagnet B, Menut L, Pennel R, Mailler S. Anthropogenic Emission Scenarios over Europe with the WRF-CHIMERE-v2020 Models: Impact of Duration and Intensity of Reductions on Surface Concentrations during the Winter of 2015. Atmosphere. 2023; 14(2):224. https://doi.org/10.3390/atmos14020224
Chicago/Turabian StyleCholakian, Arineh, Bertrand Bessagnet, Laurent Menut, Romain Pennel, and Sylvain Mailler. 2023. "Anthropogenic Emission Scenarios over Europe with the WRF-CHIMERE-v2020 Models: Impact of Duration and Intensity of Reductions on Surface Concentrations during the Winter of 2015" Atmosphere 14, no. 2: 224. https://doi.org/10.3390/atmos14020224
APA StyleCholakian, A., Bessagnet, B., Menut, L., Pennel, R., & Mailler, S. (2023). Anthropogenic Emission Scenarios over Europe with the WRF-CHIMERE-v2020 Models: Impact of Duration and Intensity of Reductions on Surface Concentrations during the Winter of 2015. Atmosphere, 14(2), 224. https://doi.org/10.3390/atmos14020224