Decadal Application of WRF/Chem under Future Climate and Emission Scenarios: Impacts of Technology-Driven Climate and Emission Changes on Regional Meteorology and Air Quality
Abstract
:1. Introduction
2. Model Description and Simulation Setup
3. Technology Driver Model (TDM) for Emission Projections
4. Impacts of TDM/A1B and TDM/B2 on Future Climate, Clouds, and Air Quality
4.1. Impacts on Climate Variables
4.2. Impacts on Air Quality Variables
4.3. Impacts on Air Quality Exceedance Days
4.4. Impacts on Cloud-Aerosol Variables
5. Impacts of Climate vs. Emission Changes on Future Air Quality
6. Summary
7. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AER/AFWA | Atmospheric and Environmental Research Inc. and Air Force Weather Agency |
AQCHEM AQ | chemistry module based on CMAQ v4.7 |
BASE_EVAL | Base Evaluation model simulation in this work |
BASE_TDM | Base TDM reference model simulation in this work |
BC | Black Carbon |
BCONs | Boundary Conditions |
BVOCs | Biogenic Volatile Organic Compounds |
CB05 | Carbon Bond Mechanism 2005 |
CCN | Cloud Condensation Nuclei |
CCN5 | Cloud Condensation Nuclei at Supersaturation 0.5% |
CDNC | Cloud Droplet Number Concentration |
CESM/CAM | Community Earth System Model/Community Atmosphere Model |
CF | Cloud Fraction |
CLM | Community Land Model |
CLIM_EMIS_A1B | Future A1B climate + TDM/A1B scenario emissions model simulation in this work |
CLIM_EMIS_B2 | Future B2 climate + TDM/B2 scenario emissions model simulation in this work |
CONUS | Contiguous United States |
COT | Cloud Optical Thickness |
CWP | Cloud Water Path |
DA24h | Daily Average 24-h |
EMIS_A1B | Future TDM/A1B scenario emissions model simulation in this work |
EMIS_B2 | Future TDM/B2 scenario emissions model simulation in this work |
EPA | Environmental Protection Agency |
FTUV | Fast Troposphere Ultraviolet Visible |
GCMs | Global Climate Models |
GHG | Greenhouse Gases |
ICONs | Initial Conditions |
IPCC | Intergovernmental Panel on Climate Change |
LSM | Land Surface Model |
LW | Longwave (Radiation) |
MADE/VBS | Modal Aerosol Dynamics Model/Volatility Basis Set |
MDA8 | Maximum Daily Average 8-h |
MEGAN | Model of Emissions of Gases and Aerosols from Nature |
MSKF | Multi-Scale Kain Fritsch |
NAAQS | National Ambient Air Quality Standard |
Noah | National Center for Environmental Prediction, Oregon State University, Air Force and Hydrologic Research Lab |
NCEP/FNL | National Centers for Environmental Prediction Final Analysis Dataset |
NEI | National Emissions Inventory |
OA | Organic Aerosol |
OLR | Outgoing Longwave Radiation at the Top of the Atmosphere |
PBL | Planetary Boundary Layer |
PBLH | Planetary Boundary Layer Height |
PM | Particulate Matter |
POA | Primary Organic Aerosol |
PRECIP | Precipitation (Total) |
Q2 | 2-m Water Vapor Mixing Ratio |
RCP | Representative Concentration Pathways |
RRTMG | Rapid Radiative Transfer Model for GCMs |
SOA | Secondary Organic Aerosol |
SPEW-Trend | Speciated Pollutant Emission Wizard-Trend |
SRES | Special Report on Emissions Scenarios |
SW | Shortwave (Radiation) |
SWCF | Shortwave Cloud Forcing |
SWDOWN | Downward Shortwave Radiation |
T2 | 2-m Temperature |
TNMVOCs | Total Non-Methane Volatile Organic Compounds |
TDM | Technology Driver Model |
TSOA | Total Secondary Organic Aerosol |
VOCs | Volatile Organic Compounds |
WHO | World Health Organization |
WRF/Chem | Weather Research and Forecasting model coupled with Chemistry |
WS10 | 10-m Wind Speeds |
YSU | Yonsei University |
References
- World Meteorological Organization (WMO); United Nations Environment Programme; Intergovernmental Panel on Climate Change. Emissions Scenarios; IPCC Special Report; IPCC: Geneva, Switzerland, 2000; ISBN 92-9169-113-5. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Bell, M.L.; Goldberg, R.; Hogrefe, C.; Kinney, P.L.; Knowlton, K.; Lynn, B.; Rosenthal, J.; Rosenzweig, C.; Patz, J.A. Climate change, ambient ozone, and health in 50 US cities. Clim. Change 2007, 82, 61–76. [Google Scholar] [CrossRef]
- Katragkou, E.; Zanis, P.; Kioutsioukis, I.; Tegoulias, I.; Melas, D.; Krüger, B.C.; Coppola, E. Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. J. Geophys. Res. Atmos. 2011, 116, D22307. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.; Monteiro, A.; Solman, S.; Miranda, A.; Borrego, C. Climate-driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal. Environ. Sci. Policy 2010, 13, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.G.; Gilliland, A.B.; Hogrefe, C.; Mickley, L.J. Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J. Geophys. Res. Atmos. 2008, 113, D14307. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.F.; Fu, J.S.; Wu, S.; Mickley, L.J. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmos. Meas. Tech. 2011, 11, 4789–4806. [Google Scholar] [CrossRef] [Green Version]
- Avise, J.; Chen, J.; Lamb, B.; Wiedinmyer, C.; Guenther, A.; Salathé, E.; Mass, C. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes. Atmos. Meas. Tech. 2009, 9, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Makar, P.A.; Plummer, D.A. Projections of mid-century summer air-quality for North America: Effects of changes in climate and precursor emissions. Atmos. Meas. Tech. 2012, 12, 5367–5390. [Google Scholar] [CrossRef] [Green Version]
- Tagaris, E.; Manomaiphiboon, K.; Liao, K.-J.; Leung, L.R.; Woo, J.-H.; He, S.; Amar, P.; Russell, A.G. Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J. Geophys. Res. Atmos. 2007, 112, D14312. [Google Scholar] [CrossRef]
- Tao, Z.; Williams, A.; Huang, H.-C.; Caughey, M.; Liang, X.-Z. Sensitivity of U.S. surface ozone to future emissions and climate changes. Geophys. Res. Lett. 2007, 34, L08811. [Google Scholar] [CrossRef]
- Penrod, A.; Zhang, Y.; Wang, K.; Wu, S.-Y.; Leung, L.R. Impacts of future climate and emission changes on U.S. air quality. Atmos. Environ. 2014, 89, 533–547. [Google Scholar] [CrossRef]
- Wang, J.; Kotamarthi, V.R. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America. Earths Futur. 2015, 3, 268–288. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, J.S.; Drake, J.B.; Liu, Y.; Lamarque, J.-F. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett. 2012, 7, 044025. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Fu, J.S.; Drake, J.B.; Lamarque, J.-F.; Liu, Y. The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmos. Meas. Tech. 2013, 13, 9607–9621. [Google Scholar] [CrossRef] [Green Version]
- Trail, M.; Tsimpidi, A.P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A.G. Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality. Geosci. Model Dev. 2013, 6, 1429–1445. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Fu, J.S.; Huang, K.; Gao, Y. Estimation of future PM2.5 and ozone-related mortality over the continental United States in a changing climate: An application of high-resolution dynamical downscaling technique. J. Air Waste Manag. Assoc. 2015, 65, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Pfister, G.G.; Walters, S.; Lamarque, J.-F.; Fast, J.; Barth, M.C.; Wong, J.; Done, J.; Holland, G.; Bruyère, C.L. Projections of future summertime ozone over the U.S. J. Geophys. Res. Atmos. 2014, 119, 5559–5582. [Google Scholar] [CrossRef]
- Li, K.; Liao, H.; Zhu, J.; Moch, J.M. Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China. J. Geophys. Res. Atmos. 2016, 121, 12985–13008. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.G.; Spero, T.L.; Bowden, J.H.; Mallard, M.S.; Dolwick, P.D. The potential effects of climate change on air quality across the conterminous US at 2030 under three Representative Concentration Pathways. Atmos. Chem. Phys. 2018, 18, 15471–15489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenech, S.; Doherty, R.M.; O’Connor, F.M.; Heaviside, C.; Macintyre, H.L.; Vardoulakis, S.; Agnew, P.; Neal, L.S. Future air pollution related health burdens associated with RCP emission changes in the UK. Sci. Total Environ. 2021, 773, 145635. [Google Scholar] [CrossRef]
- Yahya, K.; Wang, K.; Campbell, P.; Chen, Y.; Glotfelty, T.; He, J.; Pirhalla, M.; Zhang, Y. Decadal application of WRF/Chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 1: Model evaluation and impact of downscaling. Atmos. Environ. 2017, 152, 562–583. [Google Scholar] [CrossRef] [Green Version]
- Yahya, K.; Campbell, P.; Zhang, Y. Decadal application of WRF/chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 2: Current vs. future simulations. Atmos. Environ. 2017, 152, 584–604. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Yan, F.; Winijkul, E.; Streets, D.G.; Lu, Z.; Bond, T.C.; Zhang, Y. Global emission projections for the transportation sector using dynamic technology modeling. Atmos. Meas. Tech. 2014, 14, 5709–5733. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.; Zhang, Y.; Yan, F.; Lu, Z.; Streets, D. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. Environ. Pollut. 2018, 238, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.; Zhang, Y.; Yan, F.; Lu, Z.; Streets, D. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Environ. Pollut. 2018, 238, 918–930. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Yahya, K. Decadal application of WRF/Chem over the continental U.S.: Simulation design, sensitivity simulations, and climatological model evaluation. Atmos. Environ. 2021, 253, 118331. [Google Scholar] [CrossRef]
- Clough, S.; Shephard, M.; Mlawer, E.; Delamere, J.; Iacono, M.; Cady-Pereira, K.; Boukabara, S.; Brown, P. Atmos. radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y. A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteorol. Soc. 2010, 136, 1481–1496. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 Modeling sys-tem. Part I: Part I: Model Implementation and Sensitivity. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One and Two-Moment Schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Alapaty, K.; Herwehe, J.A.; Del Genio, A.; Niyogi, D. Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G.Z. Final Report e Updates to the Carbon Bond Mechanism: CB05; Rep. RT-04-00675; Yocke and Co.: Novato, CA, USA, 2005; p. 246. [Google Scholar]
- Sarwar, G.; Bhave, P.V. Modeling the Effect of Chlorine Emissions on Ozone Levels over the Eastern United States. J. Appl. Meteorol. Clim. 2007, 46, 1009–1019. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.; Madronich, S.; Walters, S.; Zhang, R.; Rasch, P.; Collins, W. Effect of clouds on photolysis and oxidants in the troposphere. J. Geophys. Res. 2003, 108, 4642. [Google Scholar] [CrossRef]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ. 1998, 32, 2981–2999. [Google Scholar] [CrossRef]
- Ahmadov, R.; McKeen, S.A.; Robinson, A.; Bahreini, R.; Middlebrook, A.; de Gouw, J.; Meagher, J.F.; Hsie, E.-Y.; Edgerton, E.S.; Shaw, S.; et al. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res. 2012, 117, D06301. [Google Scholar] [CrossRef]
- Abdul-Razzak, H.; Ghan, S. A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res. 2000, 105, 6837–6844. [Google Scholar] [CrossRef]
- Glotfelty, T.; Zhang, Y. Impact of future climate policy scenarios on air quality and aerosol-cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions. Atmos. Environ. 2017, 152, 531–552. [Google Scholar] [CrossRef] [Green Version]
- Glotfelty, T.; He, J.; Zhang, Y. Improving organic aerosol treatments in CESM/CAM 5: Development, application, and evaluation. J. Adv. Model. Earth Syst. 2017, 9, 1506–1539. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. National Emissions Inventories. Available online: https://www.epa.gov/air-emissions-inventories (accessed on 18 November 2022).
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Creighton, G. AFWA Dust Emission Scheme for WRF/Chem-GOCART; WRF workshop: Boulder, CO, USA, 2011. [Google Scholar]
- LeGrand, S.L.; Polashenski, C.; Letcher, T.W.; Creighton, G.A.; Peckham, S.E.; Cetola, J.D. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geosci. Model Dev. 2019, 12, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.L.; Barrie, L.A.; Blanchet, J.-P. Modeling sea-salt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. Atmos. 1997, 102, 3805–3818. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, Y.; Yahya, K.; Wu, S.-Y.; Grell, G. Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality. Atmos. Environ. 2015, 115, 716–732. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y. Improvement and further development in CESM/CAM5: Gas-phase chemistry and inorganic aerosol treatments. Atmos. Meas. Tech. 2014, 14, 9171–9200. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Yang, Z.-L. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations. J. Clim. 2012, 25, 6271–6286. [Google Scholar] [CrossRef]
- Yan, F.; Winijkul, E.; Jung, S.; Bond, T.; Streets, D. Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles. Atmos. Environ. 2011, 45, 4830–4844. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Annual Energy Outlook 2013 with Projections to 2040. Available online: https://www.osti.gov/servlets/purl/1081575.DOE/EIA-0383(2013) (accessed on 18 November 2022).
- Nazarenko, L.; Schmidt, G.A.; Miller, R.L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G.L.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst. 2015, 7, 244–267. [Google Scholar] [CrossRef] [Green Version]
- Separovic, L.; Alexandru, A.; Laprise, R.; Martynov, A.; Sushama, L.; Winger, K.; Tete, K.; Valin, M. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim. Dyn. 2013, 41, 3167–3201. [Google Scholar] [CrossRef] [Green Version]
- Pfleiderer, P.; Nath, S.; Schleussner. Extreme Atlantic hurricane seasons made twice as likely by ocean warming. Weather Clim. Dynam. 2022, 4, 1–12. [Google Scholar] [CrossRef]
- U.S. EPA. Overview of EPA’S Updates to the Air Quality Standards for Ground-Level Ozone, the National Ambient Air Quality Standards. Available online: https://www.epa.gov/sites/default/files/2015-10/documents/overview_of_2015_rule.pdf (accessed on 18 November 2022).
- Yu, S. The role of organic acids (formic, acetic, pyruvic, and oxalic) in the formation of cloud condensation nuclei (CCN): A review. Atmos. Res. 2000, 53, 185–217. [Google Scholar] [CrossRef]
- Valin, L.C.; Russell, A.R.; Cohen, R.C. Chemical feedback effects on the spatial patterns of the NOx weekend effect: A sensitivity analysis. Atmos. Meas. Tech. 2014, 14, 1–9. [Google Scholar] [CrossRef]
Simulation Index | Emission Scenario | Anthro. Emissions | Climate Conditions | Purpose or Impact Assessment | Reference |
---|---|---|---|---|---|
BASE_EVAL | None | NEI 2002, 2005, and 2008 | 2001–2010 | Model performance evaluation | [29] |
BASE_TDM | None | TDM Base 2005 | 2001–2010 | Benchmark for other scenarios | This work |
EMIS_A1B | TDM/ A1B | TDM/A1B 2046–2055 | 2001–2010 | TDM/A1B Emissions Only (compared to BASE_TDM) | This work |
EMIS_B2 | TDM/B2 | TDM/B2 2046–2055 | 2001–2010 | TDM/B2 Emissions Only (compared to BASE_TDM) | This work |
CLIM_A1B * | TDM/A1B | TDM/A1B 2046–2055 | 2046–2055 | A1B Climate Only (compared to EMIS_A1B) | This work |
CLIM_B2 * | TDM/B2 | TDM/B2 2046–2055 | 2046–2055 | B2 Climate Only (compared to EMIS_B2) | This work |
CLIM_EMIS_A1B | A1B | TDM/A1B 2046–2055 | 2046–2055 | A1B Climate + TDM/A1B Emissions (compared to BASE_TDM) | This work |
CLIM_EMIS_B2 | B2 | TDM/B2 2046–2055 | 2046–2055 | B2 Climate + TDM/B2 Emissions (compared to BASE_TDM) | This work |
Model Attributes | Configuration |
---|---|
Model | Online-coupled WRF/Chem v3.7 |
Domain and resolutions | 36 km × 36 km, 148 × 112 horizontal resolution over the continental US with 34 layers vertically from surface to 100 hpa |
Simulation period | Current decade 2001–2010 and future decade 2046–2055 |
Physics and Chemistry options [Reference(s)] | |
Radiation | Rapid and accurate Radiative Transfer Model for GCM (RRTMG) SW and LW [30,31] |
Boundary layer | Yonsei University (YSU) [32,33] |
Land surface model | National Center for Environmental Prediction, Oregon State University, Air Force and Hydrologic Research Lab (Noah) [34,35] |
Microphysics | Morrison double moment scheme [36] |
Cumulus parameterization | Multi-Scale Kain Fritsch (MSKF) [37] |
Gas-phase chemistry | Modified CB05 with updated chlorine chemistry [38,39] |
Photolysis | Fast Troposphere Ultraviolet Visible (FTUV) [40] |
Aqueous-phase chemistry | AQ chemistry module (AQCHEM) based on CMAQv4.7 implementation for both resolved and convective clouds |
Aerosol module | Modal Aerosol Dynamics Model/Volatility Basis Set(MADE/VBS) [41,42] |
Aerosol activation | Abdul-Razzak and Ghan [43] |
Inputs [Reference(s)] | |
Chemical and meteorological ICs/BCs | Downscaled from the Modified Community Earth System Model/Community Atmosphere model (CESM/CAM5) v1.2.2; Meteorology ICONs/BCONs bias-corrected with NCEP/FNL. [44,45] |
Anthropogenic emissions | U.S. EPA National Emissions Inventory 2002, 2005, 2008 for the current decade; TDM-projected growth factor under the IPCC/A1B and B2 scenarios based on 2005 emission. [25] and [46] |
Biogenic emissions | Model of Emissions of Gases and Aerosols from Nature version 2 (MEGAN v2) [47] |
Dust emissions | Atmospheric and Environmental Research Inc. and Air Force Weather Agency (AER/AFWA) [48,49] |
Sea-salt emissions | Gong et al. parameterization [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jena, C.; Zhang, Y.; Wang, K.; Campbell, P.C. Decadal Application of WRF/Chem under Future Climate and Emission Scenarios: Impacts of Technology-Driven Climate and Emission Changes on Regional Meteorology and Air Quality. Atmosphere 2023, 14, 225. https://doi.org/10.3390/atmos14020225
Jena C, Zhang Y, Wang K, Campbell PC. Decadal Application of WRF/Chem under Future Climate and Emission Scenarios: Impacts of Technology-Driven Climate and Emission Changes on Regional Meteorology and Air Quality. Atmosphere. 2023; 14(2):225. https://doi.org/10.3390/atmos14020225
Chicago/Turabian StyleJena, Chinmay, Yang Zhang, Kai Wang, and Patrick C. Campbell. 2023. "Decadal Application of WRF/Chem under Future Climate and Emission Scenarios: Impacts of Technology-Driven Climate and Emission Changes on Regional Meteorology and Air Quality" Atmosphere 14, no. 2: 225. https://doi.org/10.3390/atmos14020225
APA StyleJena, C., Zhang, Y., Wang, K., & Campbell, P. C. (2023). Decadal Application of WRF/Chem under Future Climate and Emission Scenarios: Impacts of Technology-Driven Climate and Emission Changes on Regional Meteorology and Air Quality. Atmosphere, 14(2), 225. https://doi.org/10.3390/atmos14020225